

RESULTS RECIPIENT SEATTLE SPERM BANK Attn: Jeffrey Olliffe 4915 25th Ave NE Ste 204W Seattle, WA 98105 Phone: (206) 588-1484 Fax: (206) 466-4696 NPI: 1306838271 Report Date: 01/27/2022 MALE DONOR 10625 DOB: Ethnicity: Mixed or Other Caucasian Sample Type: EDTA Blood Date of Collection: Date Received: 01/21/2022 Date Tested: 01/27/2022 Barcode: 11004512969797 Accession ID: CSLKP4MHRXHDMHQ Indication: Other genetic carrier status FEMALE N/A

POSITIVE: CARRIER

Foresight® Carrier Screen

The **Myriad Foresight Carrier Screen** utilizes sequencing, maximizing coverage across all DNA regions tested, to help you learn about your chance to have a child with a genetic disease.

RESULTS SUMMARY

Risk Details	DONOR 10625	Partner
Panel Information	Foresight Carrier Screen Universal Panel Fundamental Plus Panel Fundamental Panel (175 conditions tested)	N/A
POSITIVE: CARRIER Mucopolysaccharidosis Type IIIA Reproductive Risk: 1 in 740 Inheritance: Autosomal Recessive	CARRIER [★] NM_000199.3(SGSH):c.734G>A (R245H) heterozygote	The reproductive risk presented is based on a hypothetical pairing with a partner of the same ethnic group. Carrier testing should be considered. See "Next Steps".

*Carriers generally do not experience symptoms.

No disease-causing mutations were detected in any other gene tested. A complete list of all conditions tested can be found on page 7.

CLINICAL NOTES

• Genetic counseling is recommended for reproductive risk assessment in patients with known carrier status.

NEXT STEPS

- Carrier testing should be considered for the diseases specified above for the patient's partner.
- Patients are recommended to discuss reproductive risks with their health care provider or a genetic counselor. Patients may also wish to discuss any positive results with blood relatives, as there is an increased chance that they are also carriers.

MALE DONOR 10625 DOB: Ethnicity: Mixed or Other Caucasian Barcode: 11004512969797

FEMALE N/A

POSITIVE: CARRIER Mucopolysaccharidosis Type IIIA

Reproductive risk: 1 in 740 Risk before testing: 1 in 140,000

Gene: SGSH | Inheritance Pattern: Autosomal Recessive

Patient	DONOR 10625	No partner tested
Result	• Carrier	N/A
Variant(s)	NM_000199.3(SGSH):c.734G>A(R245H) heterozygote	N/A
Methodology	Sequencing with copy number analysis (v3.1)	N/A
Interpretation	This individual is a carrier of mucopolysaccharidosis type IIIA. Carriers generally do not experience symptoms.	N/A
Detection rate	>99%	N/A
Exons tested	NM_000199:1-8.	N/A

What is Mucopolysaccharidosis Type IIIA?

Mucopolysaccharidosis type III, or Sanfilippo syndrome, consists of four disease sub-types, based on the gene that causes the disease. All sub-types of MPS III are inherited lysosomal storage disorders and have similar clinical features. Mucopolysaccharidosis type IIIA (MPS IIIA), also known as Sanfilippo syndrome Type A, is caused by harmful changes (mutations) in the *SGSH* gene. The symptoms associated with MPS IIIA are caused by a buildup of harmful substances in the central nervous system and cause progressive destruction of nerve cells. The severity of the disease can range from mild to severe, even among affected individuals in the same family.

While infants with MPS IIIA appear normal at birth, delays in speech and motor skills may begin before one year of age, and nearly all children will experience some sort of developmental delay before six years of age. Children often have recurrent ear, nose, and throat infections. Behavioral issues, such as aggressiveness, sleeplessness, and hyperactivity, typically develop in early childhood, often between the ages of three and five. Intellectual disability becomes more severe during this time period, in part because seizures frequently develop. Many children start to lose the ability to speak by age 10. Motor problems, such as difficulty swallowing and stiff or rigid muscles (spasticity), will also develop. Affected individuals may also experience recurrent diarrhea and hearing loss. Most individuals with MPS IIIA lose the ability to walk by their mid-teens. Physical features of the disease can include coarse facial features, skeletal abnormalities, a large head (macrocephaly), and thick or excess body hair (hirsutism).

How common is Mucopolysaccharidosis Type IIIA?

MPS IIIA is the most common form of Mucopolysaccharidosis type III and is observed in approximately 1 in 100,000 individuals. The disease is observed more frequently in the Cayman Islands, with some estimates as high as 1 in 400 births.

MALE DONOR 10625 DOB: Ethnicity: Mixed or Other Caucasian Barcode: 11004512969797

FEMALE N/A

How is Mucopolysaccharidosis Type IIIA treated?

There is currently no cure for MPS IIIA. The treatment for MPS IIIA is based on the patient's particular symptoms and may include speech or occupational therapy for developmental delays, medication to treat seizures and recurrent infections, and ear tubes or hearing aids. Feeding tubes may be required in later stages of the disease. Overall, treatment is intended to relieve pain and increase the quality of life (palliative).

What is the prognosis for an individual with Mucopolysaccharidosis Type IIIA?

MPS IIIA is a progressive disease that has no cure, and individuals have a shortened lifespan. Most individuals with MPS IIIA do not survive past the second or third decade of life, with an average lifespan of approximately 15 years. However, there are rare reports of individuals with MPS IIIA who have lived into their fourth or fifth decade.

MALE DONOR 10625 DOB: Ethnicity: Mixed or Other Caucasian Barcode: 11004512969797

FEMALE N/A

Methods and Limitations

DONOR 10625 [Foresight Carrier Screen]: Sequencing with copy number analysis, spinal muscular atrophy, analysis of homologous regions, and alpha thalassemia (HBA1/ HBA2) sequencing with targeted copy number analysis (Assay(s): DTS v3.2).

Sequencing with copy number analysis

High-throughput sequencing and read-depth-based copy number analysis are used to analyze the genes listed in the Conditions Tested section of the report. Except where otherwise noted, the region of interest (ROI) comprises the indicated coding regions and 20 non-coding bases flanking each region. In a minority of cases where genomic features (e.g., long homopolymers) compromise calling fidelity, the affected non-coding bases are excluded from the ROI. The ROI is sequenced to a minimum acceptable read depth, and the sequences are compared to a reference genomic sequence (Genome Reference Consortium Human Build 37 [GRCh37]/hg19). On average, 99% of all bases in the ROI are sequenced at a read depth that is greater than the minimum read depth. Sequence variants may not be detected in areas of lower sequence coverage. Insertions and deletions may not be detected as accurately as single-nucleotide variants. Select genes or regions for which pseudogenes or other regions of homology impede reliable variant detection may be assayed using alternate technology, or they may be excluded from the ROI. *CFTR* and *DMD* testing includes analysis for exon-level deletions and duplications with an average sensitivity of ~99%. Only exon-level deletions are assayed for other genes on the panel and such deletions are detected with a sensitivity of ≥75%. Selected founder deletions may be detected at slightly higher sensitivity. Affected exons and/or breakpoints of copy number variant are provided in the variant nomenclature. In some cases, the copy number variant may be larger or smaller than indicated. If *GJB2* is tested, large upstream deletions involving the *GJB6* and/or *CRYL1* genes that may affect the expression of *GJB2* are also analyzed.

Spinal muscular atrophy

Targeted copy number analysis via high-throughput sequencing is used to determine the copy number of exon 7 of the *SMN1* gene. Other genetic variants may interfere with this analysis. Some individuals with two copies of *SMN1* are "silent" carriers with both *SMN1* genes on one chromosome and no copies of the gene on the other chromosome. This is more likely in individuals who have two copies of the *SMN1* gene and are positive for the g.27134T>G single-nucleotide polymorphism (SNP) (PMID: 9199562, 23788250, and 28676062), which affects the reported residual risk; Ashkenazi Jewish or Asian patients with this genotype have a high post-test likelihood of being carriers for SMA and are reported as carriers. The g.27134T>G SNP is only reported in individuals who have two copies of *SMN1*.

Analysis of homologous regions

A combination of high-throughput sequencing, read-depth-based copy number analysis, and targeted genotyping is used to determine the number of functional gene copies and/or the presence of selected loss-of-function variants in certain genes that have homology to other genomic regions. The precise breakpoints of large deletions in these genes cannot be determined but are instead estimated from copy number analysis. Pseudogenes may interfere with this analysis, especially when many pseudogene copies are present.

If *CYP21A2* is tested, patients who have one or more additional copies of the *CYP21A2* gene and a pathogenic variant may or may not be a carrier of 21-hydroxylase deficient CAH, depending on the chromosomal location of the variants (phase). Benign *CYP21A2* gene duplications and/or triplications will only be reported in this context. Some individuals with two functional *CYP21A2* gene copies may be "silent" carriers, with two gene copies resulting from a duplication on one chromosome and a gene deletion on the other chromosome. This and other similar rare carrier states, where complementary changes exist between the chromosomes, may not be detected by the assay. Given that the true incidence of non-classic CAH is unknown, the residual carrier and reproductive risk numbers on the report are based only on the published incidence for classic CAH. However, the published prevalence of non-classic CAH is highest in individuals of Ashkenazi Jewish, Hispanic, Italian, and Yugoslav descent. Therefore, the residual and reproductive risks are likely an underestimate for CAH, especially in the aforementioned populations, as they do not account for non-classic CAH.

MALE DONOR 10625 DOB: Ethnicity: Mixed or Other Caucasian Barcode: 11004512969797

FEMALE N/A

Alpha thalassemia (HBA1/HBA2) sequencing with targeted copy number analysis

High-throughput sequencing and read-depth-based copy number analysis are used to identify sequence variation and functional gene copies within the region of interest (ROI) of *HBA1* and *HBA2*, which includes the listed exons plus 20 intronic flanking bases. In a minority of cases where genomic features (e.g., long homopolymers) compromise calling fidelity, the affected intronic bases are not included in the ROI. The ROI is sequenced to a minimum acceptable read depth, and the sequences are compared to a reference genomic sequence (Genome Reference Consortium Human Build 37 [GRCh37]/hg19). On average, 99% of all bases in the ROI are sequenced at a read depth that is greater than the minimum read depth. Sequence variants may not be detected in areas of lower sequence coverage. Insertions and deletions may not be detected as accurately as single-nucleotide variants. For large deletions or duplications in these genes, the precise breakpoints cannot be determined but are instead estimated from copy number analysis. This assay has been validated to detect up to two additional copies of each alpha globin gene. In rare instances where assay results suggest greater than two additional copies are present, this will be noted but the specific number of gene copies observed will not be provided.

Extensive sequence homology exists between *HBA1* and *HBA2*. This sequence homology can prevent certain variants from being localized to one gene over the other. In these instances, variant nomenclature will be provided for both genes. If follow-up testing is indicated for patients with the nomenclature provided for both genes, both *HBA1* and *HBA2* should be tested. Some individuals with four functional alpha globin gene copies may be "silent" carriers, with three gene copies resulting from triplication on one chromosome and a single gene deletion on the other chromosome. This and other similar rare carrier states, where complementary changes exist between the chromosomes, may not be detected by the assay.

Interpretation of reported variants

The classification and interpretation of all variants identified in this assay reflects the current state of Myriad's scientific understanding at the time this report was issued. Variants are classified according to internally defined criteria, which are compatible with the ACMG Standards and Guidelines for the Interpretation of Sequence Variants (PMID: 25741868). Variants that have been determined by Myriad to be disease-causing or likely disease-causing (i.e. pathogenic or likely pathogenic) are reported. Benign variants, variants of uncertain clinical significance (VUS), and variants not directly associated with the specified disease phenotype(s) are not reported. Variant classification and interpretation may change for a variety of reasons, including but not limited to, improvements to classification techniques, availability of additional scientific information, and observation of a variant in more patients. If the classification of one or more variants identified in this patient changes, an updated report reflecting the new classification generally will not be issued. If an updated report is issued, the variants reported may change based on their current classification. This can include changes to the variants displayed in gene specific 'variants tested' sections. Healthcare providers may contact Myriad directly to request updated variant classification information specific to this test result.

Limitations

The MWH Foresight Carrier Screen is designed to detect and report germline (constitutional) alterations. Mosaic (somatic) variation may not be detected, and if it is detected, it may not be reported. If more than one variant is detected in a gene, additional studies may be necessary to determine if those variants lie on the same chromosome or different chromosomes (phase). This test is not designed to detect sex-chromosome copy number variations. If present, sex-chromosome abnormalities may significantly reduce test sensitivity for X-linked conditions. Variant interpretation and residual and reproductive risk estimations assume a normal karyotype and may be different for individuals with abnormal karyotypes. The test does not fully address all inherited forms of intellectual disability, birth defects, or heritable diseases. Furthermore, not all forms of genetic variation are detected by this assay (i.e., duplications [except in specified genes], chromosomal rearrangements, structural abnormalities, etc.). Additional testing may be appropriate for some individuals. Pseudogenes and other regions of homology may interfere with this analysis. In an unknown number of cases, other genetic variation may interfere with variant detection. Rare carrier states where complementary changes exist between the chromosomes may not be detected by the assay. Other possible sources of diagnostic error include sample mix-up, trace contamination, bone marrow transplantation, blood transfusions, and technical or analytical errors.

Detection rates are determined using published scientific literature and/or reputable databases, when available, to estimate the fraction of disease alleles, weighted by frequency, that the methodology is predicted to be able or unable to detect. Detection rates are approximate and only account for analytical sensitivity. Certain variants that have been previously described in the literature may not be reported, if there is insufficient evidence for pathogenicity. Detection rates do not account for the disease specific rates of *de novo* variation.

This test was developed, and its performance characteristics determined by, Myriad Women's Health, Inc. It has not been cleared or approved by the US Food and Drug Administration (FDA). The FDA does not require this test to go through premarket review. This test is used for clinical purposes. It should not be regarded as investigational or for research. This laboratory is certified under the Clinical Laboratory Improvement Amendments of 1988 (CLIA) as qualified to perform high-complexity clinical testing. These results are adjunctive to the ordering physician's evaluation. CLIA Number: #05D1102604.

MALE DONOR 10625 DOB: Ethnicity: Mixed or Other Caucasian Barcode: 11004512969797 FEMALE N/A

Incidental Findings

Unless otherwise indicated, these results and interpretations are limited to the specific disease panel(s) requested by the ordering healthcare provider. In some cases, standard data analyses may identify genetic findings beyond the region(s) of interest specified by the test, and such findings may not be reported. These findings may include genomic abnormalities with major, minor, or no, clinical significance.

If you have questions or would like more information about any of the test methods or limitations, please contact (888) 268-6795.

Resources

GENOME CONNECT | http://www.genomeconnect.org

Patients can share their reports using research registries such as Genome Connect, an online research registry building a genetics and health knowledge base. Genome Connect provides patients, physicians, and researchers an opportunity to share genetic information to support the study of the impact of genetic variation on health conditions.

SENIOR LABORATORY DIRECTOR

Kenter R. Boules

Karla R. Bowles, PhD, FACMG, CGMB

Report content approved by Maria Alfaro, PhD, FACMG, CGMB on Jan 27, 2022

MALE DONOR 10625 DOB: Ethnicity: Mixed or Other Caucasian Barcode: 11004512969797

FEMALE N/A

Conditions Tested

6-pyruvoyl-tetrahydropterin Synthase Deficiency - Gene: PTS. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000317:1-6. **Detection Rate:** Mixed or Other Caucasian >99%.

Adenosine Deaminase Deficiency - Gene: ADA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000022:1-12. Detection Rate: Mixed or Other Caucasian 98%.

Alpha Thalassemia, HBA1/HBA2-related - Genes: HBA1, HBA2. Autosomal Recessive. Alpha thalassemia (HBA1/HBA2) sequencing with targeted copy number analysis. Exons: NM_000517:1-3; NM_000558:1-3. Variants (16): -(alpha)20.5, --BRIT, --MEDI, --MEDII, --SEA, --THAI or --FIL, -alpha3.7, -alpha4.2, HBA1+HBA2 deletion, Hb Constant Spring, Poly(A) AATAAA>AATA-, Poly(A) AATAAA>AATAAG, Poly(A) AATAAA>AATGAA, anti3.7, anti4.2, del HS-40. Detection Rate: Not calculated due to rarity of disease in this individual's reported ethnicity.

Alpha-mannosidosis - Gene: MAN2B1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000528:1-23. Detection Rate: Mixed or Other Caucasian >99%.

Alpha-sarcoglycanopathy - Gene: SGCA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000023:1-9. Detection Rate: Mixed or Other Caucasian >99%.

Alstrom Syndrome - Gene: ALMS1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_015120:1-23. Detection Rate: Mixed or Other Caucasian >99%.

Andermann Syndrome - Gene: SLC12A6. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_133647:1-25. Detection Rate: Mixed or Other Caucasian >99%.

Argininemia - Gene: ARG1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000045:1-8. Detection Rate: Mixed or Other Caucasian 97%. Argininosuccinic Aciduria - Gene: ASL. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001024943:1-16. Detection Rate: Mixed or Other Caucasian >99%.

Aspartylglucosaminuria - Gene: AGA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000027:1-9. Detection Rate: Mixed or Other Caucasian >99%.

Ataxia with Vitamin E Deficiency - Gene: TTPA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000370:1-5. Detection Rate: Mixed or Other Caucasian >99%.

Ataxia-telangiectasia - Gene: ATM. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000051:2-63. Detection Rate: Mixed or Other Caucasian 96%.

ATP7A-related Disorders - Gene: ATP7A. X-linked Recessive. Sequencing with copy number analysis. **Exons:** NM_000052:2-23. **Detection Rate:** Mixed or Other Caucasian 90%.

Autoimmune Polyglandular Syndrome Type 1 - Gene: AIRE. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000383:1-14. Detection Rate: Mixed or Other Caucasian >99%.

Autosomal Recessive Osteopetrosis Type 1 - Gene: TCIRG1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_006019:2-20. Detection Rate: Mixed or Other Caucasian 96%.

Autosomal Recessive Polycystic Kidney Disease, PKHD1-related - Gene: PKHD1. Autosomal Recessive. Sequencing with copy number analysis. Exons:

NM_138694 2-67. Detection Rate: Mixed or Other Caucasian >99%.

Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay - Gene: SACS. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_014363 2-10. Detection Rate: Mixed or Other Caucasian 99%.

Bardet-Biedl Syndrome, BBS1-related - Gene: BBS1. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_024649:1-17. **Detection Rate:** Mixed or Other Caucasian >99%. **Bardet-Biedl Syndrome, BBS10-related** - Gene: BBS10. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_024685:1-2. Detection Rate: Mixed or Other Caucasian >99%.

Bardet-Biedl Syndrome, BBS12-related - Gene: BBS12. Autosomal Recessive. Sequencing with copy number analysis. Exon: NM_152618:2. Detection Rate: Mixed or Other Caucasian >99%.

Bardet-Biedl Syndrome, BBS2-related - Gene: BBS2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_031885:1-17. Detection Rate: Mixed or Other Caucasian >99%.

BCS1L-related Disorders - Gene: BCS1L. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_004328:3-9. **Detection Rate:** Mixed or Other Caucasian >99%.

Beta-sarcoglycanopathy - Gene: SGCB. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000232:1-6. **Detection Rate:** Mixed or Other Caucasian >99%.

Biotinidase Deficiency - Gene: BTD. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000060:1-4. Detection Rate: Mixed or Other Caucasian >99%.

Bloom Syndrome - Gene: BLM. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000057:2-22. **Detection Rate:** Mixed or Other Caucasian >99%.

Calpainopathy - Gene: CAPN3. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000070:1-24. **Detection Rate:** Mixed or Other Caucasian 99%.

Canavan Disease - Gene: ASPA. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000049:1-6. **Detection Rate:** Mixed or Other Caucasian 98%.

Carbamoylphosphate Synthetase I Deficiency - Gene: CPS1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001875:1-38. Detection Rate: Mixed or Other Caucasian >99%.

Carnitine Palmitoyltransferase IA Deficiency - Gene: CPT1A. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_001876:2-19. **Detection Rate:** Mixed or Other Caucasian >99%.

Carnitine Palmitoyltransferase II Deficiency - Gene: CPT2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000098:1-5. Detection Rate: Mixed or Other Caucasian >99%.

Cartilage-hair Hypoplasia - Gene: RMRP. Autosomal Recessive. Sequencing with copy number analysis. Exon: NR_003051:1. Detection Rate: Mixed or Other Caucasian >99%.

Cerebrotendinous Xanthomatosis - Gene: CYP27A1. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000784:1-9. **Detection Rate:** Mixed or Other Caucasian >99%.

Citrullinemia Type 1 - Gene: ASS1. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000050:3-16. **Detection Rate:** Mixed or Other Caucasian >99%.

CLN3-related Neuronal Ceroid Lipofuscinosis - Gene: CLN3. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001042432 2-16. Detection Rate: Mixed or Other Caucasian >99%.

CLN5-related Neuronal Ceroid Lipofuscinosis - Gene: CLN5. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_006493:1-4. **Detection Rate:** Mixed or Other Caucasian >99%.

CLN8-related Neuronal Ceroid Lipofuscinosis - Gene: CLN8. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_018941:2-3. **Detection Rate:** Mixed or Other Caucasian >99%.

Cohen Syndrome - Gene: VPS13B. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_017890:2-62. **Detection Rate:** Mixed or Other Caucasian 97%.

COL4A3-related Alport Syndrome - Gene: COL4A3. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000091:1-52. Detection Rate: Mixed or Other Caucasian 94%.

COL4A4-related Alport Syndrome - Gene: COL4A4. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000092:2-48. **Detection Rate:** Mixed or Other Caucasian >99%.

Combined Pituitary Hormone Deficiency, PROP1-related - Gene: PROP1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_006261:1-3. Detection Rate: Mixed or Other Caucasian >99%.

Congenital Adrenal Hyperplasia, CYP11B1-related - Gene: CYP11B1. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000497:1-9. **Detection Rate:** Mixed or Other Caucasian 97%.

Congenital Adrenal Hyperplasia, CYP21A2-related - Gene: CYP21A2. Autosomal Recessive. Analysis of homologous regions. Variants (13): CYP21A2 deletion, CYP21A2 duplication, CYP21A2 triplication, G111Vfs*21, I173N, L308Ffs*6, P31L, Q319*, Q319*+CYP21A2dup, R357W, V282L, [I237N;V238E;M240K], c.293-13C>G.

Detection Rate: Mixed or Other Caucasian 96%. Congenital Disorder of Glycosylation Type Ia - Gene: PMM2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000303:1-8. Detection Rate:

Mixed or Other Caucasian >99%. Congenital Disorder of Glycosylation Type Ic - Gene: ALG6. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_013339:2-15. Detection Rate: Mixed or Other Caucasian >99%.

Congenital Disorder of Glycosylation, MPI-related - Gene: MPI. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_002435:1-8. **Detection Rate:** Mixed or Other Caucasian >99%.

Costeff Optic Atrophy Syndrome - Gene: OPA3. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_025136:1-2. Detection Rate: Mixed or Other Caucasian >99%.

Cystic Fibrosis - Gene: CFTR. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000492:1-27. IVS8-5T allele analysis is only reported in the presence of the R117H mutation. Detection Rate: Mixed or Other Caucasian >99%. Cystinosis - Gene: CTNS. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_004937:3-12. Detection Rate: Mixed or Other Caucasian >99%.

D-bifunctional Protein Deficiency - Gene: HSD17B4. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000414:1-24. **Detection Rate:** Mixed or Other Caucasian 98%.

Delta-sarcoglycanopathy - **Gene:** SGCD. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000337:2-9. **Detection Rate:** Mixed or Other Caucasian 96%.

Dihydrolipoamide Dehydrogenase Deficiency - Gene: DLD. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000108:1-14. Detection Rate: Mixed or Other Caucasian >99%.

Dysferlinopathy - **Gene:** DYSF. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_003494:1-55. **Detection Rate:** Mixed or Other Caucasian 98%. **Dystrophinopathy (Including Duchenne/Becker Muscular Dystrophy)** - Gene:

DMD. X-linked Recessive. Sequencing with copy number analysis. **Exons:** NM_004006:1-79. **Detection Rate:** Mixed or Other Caucasian 99%.

ERCC6-related Disorders - Gene: ERCC6. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000124:2-21. **Detection Rate:** Mixed or Other Caucasian 96%.

ERCC8-related Disorders - Gene: ERCC8. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000082:1-12. **Detection Rate:** Mixed or Other Caucasian 97%.

EVC-related Ellis-van Creveld Syndrome - Gene: EVC. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_153717:1-21. **Detection Rate:** Mixed or Other Caucasian 96%.

EVC2-related Ellis-van Creveld Syndrome - Gene: EVC2. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_147127:1-22. **Detection Rate:** Mixed or Other Caucasian 98%.

Fabry Disease - Gene: GLA. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000169:1-7. Detection Rate: Mixed or Other Caucasian 98%.

MALE DONOR 10625 DOB: Ethnicity: Mixed or Other Caucasian Barcode: 11004512969797

Familial Dysautonomia - Gene: ELP1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_003640:2-37. Detection Rate: Mixed or Other Caucasian >99%.

FEMALE

N/A

Familial Hyperinsulinism, ABCC8-related - Gene: ABCC8. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000352:1-39. Detection Rate: Mixed or Other Caucasian >99%.

Familial Hyperinsulinism, KCNJ11-related - Gene: KCNJ11. Autosomal Recessive. Sequencing with copy number analysis. Exon: NM_000525:1. Detection Rate: Mixed or Other Caucasian >99%.

Familial Mediterranean Fever - Gene: MEFV. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000243:1-10. Detection Rate: Mixed or Other Caucasian >99%.

Fanconi Anemia Complementation Group A - Gene: FANCA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000135:1-43. Detection Rate: Mixed or Other Caucasian 92%.

Fanconi Anemia, FANCC-related - Gene: FANCC. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000136:2-15. Detection Rate: Mixed or Other Caucasian >99%.

FKRP-related Disorders - Gene: FKRP. Autosomal Recessive. Sequencing with copy number analysis. Exon: NM_024301:4. Detection Rate: Mixed or Other Caucasian >99%.

FKTN-related Disorders - Gene: FKTN. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001079802:3-11. Detection Rate: Mixed or Other Caucasian >99%.

Free Sialic Acid Storage Disorders - Gene: SLC17A5. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_012434:1-11. **Detection Rate:** Mixed or Other Caucasian 98%.

Galactokinase Deficiency - Gene: GALK1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000154:1-8. Detection Rate: Mixed or Other Caucasian >99%.

Galactosemia - Gene: GALT. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000155:1-11. Detection Rate: Mixed or Other Caucasian >99%.

Gamma-sarcoglycanopathy - Gene: SGCG. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000231:2-8. Detection Rate: Mixed or Other Caucasian 87%.

Gaucher Disease - Gene: GBA. Autosomal Recessive. Analysis of homologous regions. Variants (10): D409V, D448H, IVS2+1G>A, L444P, N370S, R463C, R463H, R496H, V394L, p.L29Afs*18. Detection Rate: Mixed or Other Caucasian 60%. GJB2-related DFNB1 Nonsyndromic Hearing Loss and Deafness - Gene: GJB2.

Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_004004:1-2. Detection Rate: Mixed or Other Caucasian >99%.

GLB1-related Disorders - Gene: GLB1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000404:1-16. Detection Rate: Mixed or Other Caucasian >99%.

Glutaric Acidemia, GCDH-related - Gene: GCDH. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000159:2-12. **Detection Rate:** Mixed or Other Caucasian >99%.

Glycine Encephalopathy, AMT-related - Gene: AMT. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000481:1-9. **Detection Rate:** Mixed or Other Caucasian >99%.

Glycine Encephalopathy, GLDC-related - Gene: GLDC. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000170:1-25. **Detection Rate:** Mixed or Other Caucasian 94%.

Glycogen Storage Disease Type la - Gene: G6PC1. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000151:1-5. **Detection Rate:** Mixed or Other Caucasian 98%.

Glycogen Storage Disease Type Ib - Gene: SLC37A4. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_001164277 3-11. **Detection Rate:** Mixed or Other Caucasian >99%.

Glycogen Storage Disease Type III - Gene: AGL. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000642:2-34. Detection Rate: Mixed or Other Caucasian >99%.

GNE Myopathy - Gene: GNE. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001128227:1-12. Detection Rate: Mixed or Other Caucasian >99%.

GNPTAB-related Disorders - Gene: GNPTAB. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_024312:1-21. Detection Rate: Mixed or Other Caucasian >99%.

HADHA-related Disorders - Gene: HADHA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000182:1-20. Detection Rate: Mixed or Other Caucasian >99%.

Hb Beta Chain-related Hemoglobinopathy (Including Beta Thalassemia and Sickle Cell Disease) - Gene: HBB. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000518:1-3. Detection Rate: Mixed or Other Caucasian >99%. Hereditary Fructose Intolerance - Gene: ALDOB. Autosomal Recessive. Sequencing

with copy number analysis. Exons: NM_000035:2-9. Detection Rate: Mixed or Other Caucasian >99%.

Hexosaminidase A Deficiency (Including Tay-Sachs Disease) - Gene: HEXA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM 000520:1-14. Detection Rate: Mixed or Other Caucasian >99%.

HMG-CoA Lyase Deficiency - Gene: HMGCL. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000191:1-9. Detection Rate: Mixed or Other Caucasian >99%.

Holocarboxylase Synthetase Deficiency - Gene: HLCS. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000411:4-12. Detection Rate: Mixed or Other Caucasian >99%.

Homocystinuria, CBS-related - Gene: CBS. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000071:3-17. Detection Rate: Mixed or Other Caucasian >99%.

Hydrolethalus Syndrome - Gene: HYLS1. Autosomal Recessive. Sequencing with copy number analysis. **Exon:** NM_145014:4. **Detection Rate:** Mixed or Other Caucasian >99%.

Hypophosphatasia - Gene: ALPL. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000478:2-12. Detection Rate: Mixed or Other Caucasian >99%.

Isovaleric Acidemia - Gene: IVD. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_002225:1-12. **Detection Rate:** Mixed or Other Caucasian >99%.

Joubert Syndrome 2 - Gene: TMEM216. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001173990:1-5. Detection Rate: Mixed or Other Caucasian >99%.

Junctional Epidermolysis Bullosa, LAMA3-related - Gene: LAMA3. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000227:1-38. Detection Rate: Mixed or Other Caucasian >99%.

Junctional Epidermolysis Bullosa, LAMB3-related - Gene: LAMB3. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000228:2-23. Detection Rate: Mixed or Other Caucasian >99%.

Junctional Epidermolysis Bullosa, LAMC2-related - Gene: LAMC2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_005562:1-23. Detection Rate: Mixed or Other Caucasian >99%.

Krabbe Disease - Gene: GALC. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000153:1-17. Detection Rate: Mixed or Other Caucasian >99%.

Leigh Syndrome, French-Canadian Type - Gene: LRPPRC. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_133259:1-38. Detection Rate: Mixed or Other Caucasian >99%.

Lipoid Congenital Adrenal Hyperplasia - Gene: STAR. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000349:1-7. Detection Rate: Mixed or Other Caucasian >99%.

Lysosomal Acid Lipase Deficiency - Gene: LIPA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000235:2-10. Detection Rate: Mixed or Other Caucasian 98%.

Maple Syrup Urine Disease Type Ia - Gene: BCKDHA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000709:1-9. Detection Rate: Mixed or Other Caucasian >99%. MALE DONOR 10625 DOB: Ethnicity: Mixed or Other Caucasian Barcode: 11004512969797

 Maple Syrup Urine Disease Type Ib - Gene: BCKDHB. Autosomal Recessive.

 Sequencing with copy number analysis. Exons: NM_183050:1-10. Detection Rate:

 Mixed or Other Caucasian >99%.

FEMALE

N/A

Maple Syrup Urine Disease Type II - Gene: DBT. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001918:1-11. Detection Rate: Mixed or Other Caucasian 97%.

Medium Chain Acyl-CoA Dehydrogenase Deficiency - Gene: ACADM. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000016:1-12. Detection Rate: Mixed or Other Caucasian >99%.

Megalencephalic Leukoencephalopathy with Subcortical Cysts - Gene: MLC1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_015166 2-12. Detection Rate: Mixed or Other Caucasian >99%.

Metachromatic Leukodystrophy - Gene: ARSA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000487:1-8. Detection Rate: Mixed or Other Caucasian >99%.

Methylmalonic Acidemia, cblA Type - Gene: MMAA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_172250:2-7. Detection Rate: Mixed or Other Caucasian >99%.

Methylmalonic Acidemia, cblB Type - Gene: MMAB. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_052845:1-9. Detection Rate: Mixed or Other Caucasian >99%.

Methylmalonic Acidemia, MMUT-related - Gene: MMUT. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000255:2-13. Detection Rate: Mixed or Other Caucasian >99%.

Methylmalonic Aciduria and Homocystinuria, cblC Type - Gene: MMACHC. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_015506:1-4. Detection Rate: Mixed or Other Caucasian >99%.

MKS1-related Disorders - Gene: MKS1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_017777:1-18. Detection Rate: Mixed or Other Caucasian >99%.

Mucolipidosis III Gamma - Gene: GNPTG. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_032520:1-11. Detection Rate: Mixed or Other Caucasian 98%.

Mucolipidosis IV - Gene: MCOLN1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_020533:1-14. Detection Rate: Mixed or Other Caucasian >99%.

Mucopolysaccharidosis Type I - Gene: IDUA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000203:1-14. Detection Rate: Mixed or Other Caucasian >99%.

Mucopolysaccharidosis Type II - Gene: IDS. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000202:1-9. Detection Rate: Mixed or Other Caucasian 89%.

Mucopolysaccharidosis Type IIIA - Gene: SGSH. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000199:1-8. Detection Rate: Mixed or Other Caucasian >99%.

Mucopolysaccharidosis Type IIIB - Gene: NAGLU. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000263:1-6. Detection Rate: Mixed or Other Caucasian >99%.

Mucopolysaccharidosis Type IIIC - Gene: HGSNAT. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_152419:1-18. Detection Rate: Mixed or Other Caucasian >99%.

Muscular Dystrophy, LAMA2-related - Gene: LAMA2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000426:1-43,45-65. Detection Rate: Mixed or Other Caucasian 98%.

MYO7A-related Disorders - Gene: MYO7A. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000260:2-49. **Detection Rate:** Mixed or Other Caucasian >99%.

NEB-related Nemaline Myopathy - Gene: NEB. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_001271208:3-80,117-183. **Detection Rate:** Mixed or Other Caucasian 92%.

Nephrotic Syndrome, NPHS1-related - Gene: NPHS1. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_004646:1-29. **Detection Rate:** Mixed or Other Caucasian >99%.

Nephrotic Syndrome, NPHS2-related - Gene: NPHS2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_014625:1-8. Detection Rate: Mixed or Other Caucasian >99%.

Neuronal Ceroid Lipofuscinosis, CLN6-related - Gene: CLN6. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_017882:1-7. Detection Rate: Mixed or Other Caucasian >99%.

Niemann-Pick Disease Type C1 - Gene: NPC1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000271:1-25. Detection Rate: Mixed or Other Caucasian >99%.

Niemann-Pick Disease Type C2 - Gene: NPC2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_006432:1-5. Detection Rate: Mixed or Other Caucasian >99%.

Niemann-Pick Disease, SMPD1-related - Gene: SMPD1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000543:1-6. Detection Rate: Mixed or Other Caucasian >99%.

Nijmegen Breakage Syndrome - Gene: NBN. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_002485:1-16. Detection Rate: Mixed or Other Caucasian >99%.

Ornithine Transcarbamylase Deficiency - Gene: OTC. X-linked Recessive. Sequencing with copy number analysis. **Exons:** NM_000531:1-10. **Detection Rate:** Mixed or Other Caucasian 97%.

PCCA-related Propionic Acidemia - Gene: PCCA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000282:1-24. Detection Rate: Mixed or Other Caucasian 95%.

PCCB-related Propionic Acidemia - Gene: PCCB. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000532:1-15. Detection Rate: Mixed or Other Caucasian >99%.

PCDH15-related Disorders - Gene: PCDH15. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_033056:2-33. Detection Rate: Mixed or Other Caucasian 93%.

Pendred Syndrome - Gene: SLC26A4. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000441:2-21. **Detection Rate:** Mixed or Other Caucasian >99%.

Peroxisome Biogenesis Disorder Type 1 - Gene: PEX1. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000466:1-24. **Detection Rate:** Mixed or Other Caucasian >99%.

Peroxisome Biogenesis Disorder Type 3 - Gene: PEX12. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000286:1-3. **Detection Rate:** Mixed or Other Caucasian >99%.

Peroxisome Biogenesis Disorder Type 4 - Gene: PEX6. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000287:1-17. **Detection Rate:** Mixed or Other Caucasian 97%.

Peroxisome Biogenesis Disorder Type 5 - Gene: PEX2. Autosomal Recessive. Sequencing with copy number analysis. **Exon:** NM_000318:4. **Detection Rate:** Mixed or Other Caucasian >99%.

Peroxisome Biogenesis Disorder Type 6 - Gene: PEX10. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_153818:1-6. **Detection Rate:** Mixed or Other Caucasian >99%.

Phenylalanine Hydroxylase Deficiency - Gene: PAH. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000277:1-13. Detection Rate: Mixed or Other Caucasian >99%.

POMGNT-related Disorders - Gene: POMGNT1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_017739:2-22. Detection Rate: Mixed or Other Caucasian 96%.

Pompe Disease - Gene: GAA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000152:2-20. Detection Rate: Mixed or Other Caucasian 98%.PPT1-related Neuronal Ceroid Lipofuscinosis - Gene: PPT1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000310:1-9. Detection Rate: Mixed or Other Caucasian >99%.

Primary Carnitine Deficiency - Gene: SLC22A5. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_003060:1-10. Detection Rate: Mixed or Other Caucasian >99%.

MALE DONOR 10625 DOB: Ethnicity: Mixed or Other Caucasian Barcode: 11004512969797

Primary Hyperoxaluria Type 1 - Gene: AGXT. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000030:1-11. **Detection Rate:** Mixed or Other Caucasian >99%.

Primary Hyperoxaluria Type 2 - Gene: GRHPR. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_012203:1-9. **Detection Rate:** Mixed or Other Caucasian >99%.

Primary Hyperoxaluria Type 3 - Gene: HOGA1. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_138413:1-7. **Detection Rate:** Mixed or Other Caucasian >99%.

Pycnodysostosis - Gene: CTSK. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000396:2-8. **Detection Rate:** Mixed or Other Caucasian >99%.

Pyruvate Carboxylase Deficiency - Gene: PC. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000920:3-22. **Detection Rate:** Mixed or Other Caucasian >99%.

Rhizomelic Chondrodysplasia Punctata Type 1 - Gene: PEX7. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000288:1-10. Detection Rate: Mixed or Other Caucasian >99%.

RTEL1-related Disorders - Gene: RTEL1. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_032957:2-35. **Detection Rate:** Mixed or Other Caucasian >99%.

Sandhoff Disease - Gene: HEXB. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000521:1-14. Detection Rate: Mixed or Other Caucasian 98%.

Short-chain Acyl-CoA Dehydrogenase Deficiency - Gene: ACADS. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000017:1-10. Detection Rate: Mixed or Other Caucasian >99%.

Sjogren-Larsson Syndrome - Gene: ALDH3A2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000382:1-10. Detection Rate: Mixed or Other Caucasian 96%.

SLC26A2-related Disorders - Gene: SLC26A2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000112:2-3. Detection Rate: Mixed or Other Caucasian >99%.

Smith-Lemli-Opitz Syndrome - Gene: DHCR7. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001360:3-9. Detection Rate: Mixed or Other Caucasian >99%.

Spastic Paraplegia Type 15 - Gene: ZFYVE26. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_015346:2-42. Detection Rate: Mixed or Other Caucasian >99%.

Spinal Muscular Atrophy - Gene: SMN1. Autosomal Recessive. Spinal muscular atrophy. Variant (1): SMN1 copy number. Detection Rate: Mixed or Other Caucasian 95%.

Spondylothoracic Dysostosis - Gene: MESP2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001039958:1-2. Detection Rate: Mixed or Other Caucasian >99%.

TGM1-related Autosomal Recessive Congenital Ichthyosis - Gene: TGM1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000359 2-15. Detection Rate: Mixed or Other Caucasian >99%.

TPP1-related Neuronal Ceroid Lipofuscinosis - Gene: TPP1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000391:1-13. Detection Rate: Mixed or Other Caucasian >99%.

Tyrosine Hydroxylase Deficiency - Gene: TH. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_199292:1-14. Detection Rate: Mixed or Other Caucasian >99%.

Tyrosinemia Type I - Gene: FAH. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000137:1-14. Detection Rate: Mixed or Other Caucasian >99%.

Tyrosinemia Type II - Gene: TAT. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000353:2-12. **Detection Rate:** Mixed or Other Caucasian >99%.

USH1C-related Disorders - Gene: USH1C. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_005709:1-21. Detection Rate: Mixed or Other Caucasian >99%.

FEMALE N/A

MALE DONOR 10625 DOB: Ethnicity: Mixed or Other Caucasian Barcode: 11004512969797

FEMALE N/A

USH2A-related Disorders - Gene: USH2A. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_206933:2-72. Detection Rate: Mixed or Other Caucasian 98%.

Usher Syndrome Type 3 - Gene: CLRN1. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_174878:1-3. **Detection Rate:** Mixed or Other Caucasian >99%.

Very-long-chain Acyl-CoA Dehydrogenase Deficiency - Gene: ACADVL. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000018:1-20. Detection Rate: Mixed or Other Caucasian >99%.

Wilson Disease - Gene: ATP7B. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000053:1-21. Detection Rate: Mixed or Other Caucasian >99%.

X-linked Adrenal Hypoplasia Congenita - Gene: NROB1. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000475:1-2. Detection Rate: Mixed or Other Caucasian 97%.

X-linked Adrenoleukodystrophy - Gene: ABCD1. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000033:1-6. Detection Rate: Mixed or Other Caucasian 77%.

X-linked Alport Syndrome - Gene: COL4A5. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000495:1-51. Detection Rate: Mixed or Other Caucasian 96%.

X-linked Juvenile Retinoschisis - Gene: RS1. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000330:1-6. Detection Rate: Mixed or Other Caucasian 98%.

X-linked Myotubular Myopathy - Gene: MTM1. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000252:2-15. Detection Rate: Mixed or Other Caucasian 96%.

X-linked Severe Combined Immunodeficiency - Gene: IL2RG. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000206:1-8. Detection Rate: Mixed or Other Caucasian >99%.

Xeroderma Pigmentosum Group A - Gene: XPA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000380:1-6. Detection Rate: Mixed or Other Caucasian >99%.

Xeroderma Pigmentosum Group C - Gene: XPC. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_004628:1-16. Detection Rate: Mixed or Other Caucasian 97%.

MALE DONOR 10625 DOB: Ethnicity: Mixed or Other Caucasian Barcode: 11004512969797

FEMALE N/A

Risk Calculations

Below are the risk calculations for all conditions tested. Negative results do not rule out the possibility of being a carrier. Residual risk is an estimate of each patient's posttest likelihood of being a carrier, while the reproductive risk represents an estimated likelihood that the patients' future children could inherit each disease. These risks are inherent to all carrier-screening tests, may vary by ethnicity, are predicated on a negative family history, and are present even given a negative test result. Inaccurate reporting of ethnicity may cause errors in risk calculation. In addition, average carrier rates are estimated using incidence or prevalence data from published scientific literature and/or reputable databases, where available, and are incorporated into residual risk calculations for each population/ethnicity. When population-specific data is not available for a condition, average worldwide incidence or prevalence is used. Further, incidence and prevalence data are only collected for the specified phenotypes (which include primarily the classic or severe forms of disease) and may not include alternate or milder disease manifestations associated with the gene. Actual incidence rates, prevalence rates, and carrier rates, and therefore actual residual risks, may be higher or lower than the estimates provided. Carrier rates, incidence/prevalence, and/or residual risks are not provided for some genes with biological or heritable properties that would make these estimates inaccurate. A '†' symbol indicates a positive result. See the full clinical report for interpretation and details. The reproductive risk presented is based on a hypothetical pairing with a partner of the same ethnic group.

Disease	DONOR 10625 Residual Risk	Reproductive Risk
6-pyruvoyl-tetrahydropterin Synthase Deficiency	< 1 in 50,000	< 1 in 1,000,000
Adenosine Deaminase Deficiency	1 in 22,000	< 1 in 1,000,000
Alpha Thalassemia, HBA1/HBA2-related	Alpha globin status: aa/aa.	Not calculated
Alpha-mannosidosis	1 in 35,000	< 1 in 1,000,000
Alpha-sarcoglycanopathy	< 1 in 50,000	< 1 in 1,000,000
Alstrom Syndrome	< 1 in 50,000	< 1 in 1,000,000
Andermann Syndrome	< 1 in 50,000	< 1 in 1,000,000
Argininemia	1 in 12,000	< 1 in 1,000,000
Argininosuccinic Aciduria	1 in 15,000	< 1 in 1,000,000
Aspartylglucosaminuria	< 1 in 50,000	< 1 in 1,000,000
Ataxia with Vitamin E Deficiency	< 1 in 50,000	< 1 in 1,000,000
Ataxia-telangiectasia	1 in 4,200	< 1 in 1,000,000
ATP7A-related Disorders	< 1 in 1,000,000	1 in 250,000
Autoimmune Polyglandular Syndrome Type 1	1 in 15,000	< 1 in 1,000,000
Autosomal Recessive Osteopetrosis Type 1	1 in 8,900	< 1 in 1,000,000
Autosomal Recessive Polycystic Kidney Disease, PKHD1-related	1 in 8,100	< 1 in 1,000,000
Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay	< 1 in 44,000	< 1 in 1,000,000
Bardet-Biedl Syndrome, BBS1-related	1 in 32,000	< 1 in 1,000,000
Bardet-Biedl Syndrome, BBS10-related	1 in 42,000	< 1 in 1,000,000
Bardet-Biedl Syndrome, BBS12-related	< 1 in 50,000	< 1 in 1,000,000
Bardet-Biedl Syndrome, BBS2-related	< 1 in 50,000	< 1 in 1,000,000
BCS1L-related Disorders	< 1 in 50,000	< 1 in 1,000,000
Beta-sarcoglycanopathy	1 in 39,000	< 1 in 1,000,000
Biotinidase Deficiency	1 in 13,000	1 in 650,000
Bloom Syndrome	< 1 in 50,000	< 1 in 1,000,000
Calpainopathy	1 in 13,000	< 1 in 1,000,000
Canavan Disease	1 in 9,700	< 1 in 1,000,000
Carbamoylphosphate Synthetase I Deficiency	< 1 in 57,000	< 1 in 1,000,000
Carnitine Palmitoyltransferase IA Deficiency	< 1 in 50,000	< 1 in 1,000,000
Carnitine Palmitoyltransferase II Deficiency	1 in 25,000	< 1 in 1,000,000
Cartilage-hair Hypoplasia	< 1 in 50,000	< 1 in 1,000,000
Cerebrotendinous Xanthomatosis	1 in 11,000	< 1 in 1,000,000
Citrullinemia Type 1	1 in 14,000	< 1 in 1,000,000
CLN3-related Neuronal Ceroid Lipofuscinosis	1 in 8,600	< 1 in 1,000,000
CLN5-related Neuronal Ceroid Lipofuscinosis	< 1 in 50,000	< 1 in 1,000,000
CLN8-related Neuronal Ceroid Lipofuscinosis	< 1 in 50,000	< 1 in 1,000,000
Cohen Syndrome	< 1 in 15,000	< 1 in 1,000,000
COL4A3-related Alport Syndrome	1 in 3,400	< 1 in 1,000,000
COL4A4-related Alport Syndrome	1 in 35,000	< 1 in 1,000,000
Combined Pituitary Hormone Deficiency, PROP1-related	1 in 6,100	< 1 in 1,000,000
Congenital Adrenal Hyperplasia, CYP11B1-related	1 in 8,400	< 1 in 1,000,000
Congenital Adrenal Hyperplasia, CYP21A2-related	1 in 1,300	1 in 280,000
Congenital Disorder of Glycosylation Type Ia	1 in 16,000	< 1 in 1,000,000
Congenital Disorder of Glycosylation Type Ic	< 1 in 50,000	< 1 in 1,000,000
Congenital Disorder of Glycosylation, MPI-related	< 1 in 50,000	< 1 in 1,000,000

MALE DONOR 10625 DOB: Ethnicity: Mixed or Other Caucasian Barcode: 11004512969797 FEMALE

N/A

DONOR 10625 Residual Risk Reproductive Risk Disease **Costeff Optic Atrophy Syndrome** < 1 in 50.000 < 1 in 1,000,000 **Cystic Fibrosis** 1 in 3,000 1 in 360,000 Cystinosis 1 in 22,000 < 1 in 1.000.000 **D-bifunctional Protein Deficiency** 1 in 9,000 < 1 in 1,000,000 Delta-sarcoglycanopathy < 1 in 13,000 < 1 in 1,000,000 Dihydrolipoamide Dehydrogenase Deficiency < 1 in 50,000 < 1 in 1,000,000 Dysferlinopathy 1 in 11.000 < 1 in 1.000.000 Dystrophinopathy (Including Duchenne/Becker Muscular Dystrophy) Not calculated Not calculated **ERCC6-related Disorders** 1 in 8,500 < 1 in 1,000,000 ERCC8-related Disorders < 1 in 16.000 < 1 in 1,000,000 EVC-related Ellis-van Creveld Syndrome 1 in 7,800 < 1 in 1,000,000 EVC2-related Ellis-van Creveld Syndrome 1 in 9,800 < 1 in 1,000,000 Fabry Disease < 1 in 1,000,000 1 in 220,000 Familial Dysautonomia < 1 in 50,000 < 1 in 1,000,000 Familial Hyperinsulinism, ABCC8-related 1 in 17,000 < 1 in 1,000,000 Familial Hyperinsulinism, KCNJ11-related < 1 in 50,000 < 1 in 1,000,000 Familial Mediterranean Fever 1 in 11,000 < 1 in 1,000,000 Fanconi Anemia Complementation Group A 1 in 2,800 < 1 in 1,000,000 Fanconi Anemia, FANCC-related < 1 in 50,000 < 1 in 1,000,000 **FKRP-related Disorders** 1 in 16.000 < 1 in 1,000,000 < 1 in 50,000 < 1 in 1,000,000 **FKTN-related Disorders** Free Sialic Acid Storage Disorders < 1 in 30,000 < 1 in 1,000,000 Galactokinase Deficiency 1 in 37.000 < 1 in 1,000,000 Galactosemia 1 in 8,600 < 1 in 1,000,000 Gamma-sarcoglycanopathy 1 in 3,300 < 1 in 1,000,000 1 in 260 1 in 110,000 Gaucher Disease GJB2-related DFNB1 Nonsyndromic Hearing Loss and Deafness 1 in 2,500 1 in 260,000 **GLB1-related Disorders** 1 in 17,000 < 1 in 1,000,000 Glutaric Acidemia, GCDH-related < 1 in 1,000,000 1 in 16,000 Glycine Encephalopathy, AMT-related 1 in 26,000 < 1 in 1,000,000 Glycine Encephalopathy, GLDC-related 1 in 2,500 < 1 in 1,000,000 Glycogen Storage Disease Type la 1 in 8,700 < 1 in 1,000,000 Glycogen Storage Disease Type Ib 1 in 35.000 < 1 in 1.000.000 Glycogen Storage Disease Type III < 1 in 1,000,000 1 in 16,000 **GNE Myopathy** 1 in 23,000 < 1 in 1,000,000 < 1 in 1,000,000 **GNPTAB-related** Disorders 1 in 20,000 HADHA-related Disorders 1 in 20,000 < 1 in 1,000,000 Hb Beta Chain-related Hemoglobinopathy (Including Beta Thalassemia and Sickle Cell 1 in 3,700 1 in 560,000 Disease) Hereditary Fructose Intolerance 1 in 7,900 < 1 in 1,000,000 Hexosaminidase A Deficiency (Including Tay-Sachs Disease) 1 in 30,000 < 1 in 1,000,000 < 1 in 1,000,000 HMG-CoA Lyase Deficiency < 1 in 50.000 Holocarboxylase Synthetase Deficiency 1 in 15,000 < 1 in 1,000,000 Homocystinuria, CBS-related 1 in 9,400 < 1 in 1,000,000 Hydrolethalus Syndrome < 1 in 50,000 < 1 in 1,000,000 Hypophosphatasia 1 in 30.000 < 1 in 1,000,000 Isovaleric Acidemia 1 in 32.000 < 1 in 1,000,000 Joubert Syndrome 2 < 1 in 50,000 < 1 in 1,000,000 Junctional Epidermolysis Bullosa, LAMA3-related < 1 in 50.000 < 1 in 1,000,000 Junctional Epidermolysis Bullosa, LAMB3-related 1 in 32,000 < 1 in 1,000,000 Junctional Epidermolysis Bullosa, LAMC2-related < 1 in 50,000 < 1 in 1,000,000 Krabbe Disease < 1 in 1,000,000 1 in 14,000 Leigh Syndrome, French-Canadian Type < 1 in 50,000 < 1 in 1,000,000 Lipoid Congenital Adrenal Hyperplasia < 1 in 50,000 < 1 in 1,000,000 Lysosomal Acid Lipase Deficiency 1 in 14,000 < 1 in 1,000,000 Maple Syrup Urine Disease Type Ia 1 in 39,000 < 1 in 1,000,000 Maple Syrup Urine Disease Type Ib 1 in 39,000 < 1 in 1,000,000 Maple Syrup Urine Disease Type II 1 in 16,000 < 1 in 1,000,000 Medium Chain Acyl-CoA Dehydrogenase Deficiency 1 in 4,400 1 in 790,000 Megalencephalic Leukoencephalopathy with Subcortical Cysts < 1 in 50,000 < 1 in 1,000,000 Metachromatic Leukodystrophy 1 in 16,000 < 1 in 1,000,000 Methylmalonic Acidemia, cblA Type < 1 in 50,000 < 1 in 1,000,000

MALE DONOR 10625 DOB: Ethnicity: Mixed or Other Caucasian Barcode: 11004512969797 FEMALE N/A

Dissour	DONOR 10625	Damus durative Diale
Disease	Residual Risk	Reproductive Risk
Methylmalonic Acidemia, cblB Type	1 in 48,000	< 1 in 1,000,000
Methylmalonic Acidemia, MMUT-related	1 in 26,000	< 1 in 1,000,000
Methylmalonic Aciduria and Homocystinuria, cblC Type	1 in 16,000	< 1 in 1,000,000
MKS1-related Disorders	< 1 in 50,000	< 1 in 1,000,000
Mucolipidosis III Gamma	< 1 in 20,000	< 1 in 1,000,000
Mucolipidosis IV	< 1 in 50,000	< 1 in 1,000,000
Mucopolysaccharidosis Type I	1 in 16,000	< 1 in 1,000,000
Mucopolysaccharidosis Type II	< 1 in 1,000,000	1 in 300,000
Mucopolysaccharidosis Type IIIA	NM_000199.3(SGSH):c.734G>A(R245H) heterozygote [†]	1 in 740
Mucopolysaccharidosis Type IIIB	1 in 27,000	< 1 in 1,000,000
Mucopolysaccharidosis Type IIIC	< 1 in 50,000	< 1 in 1,000,000
Muscular Dystrophy, LAMA2-related	1 in 5,700	< 1 in 1,000,000
MYO7A-related Disorders	1 in 15,000	< 1 in 1,000,000
NEB-related Nemaline Myopathy	1 in 1,200	1 in 400,000
Nephrotic Syndrome, NPHS1-related	< 1 in 50,000	< 1 in 1,000,000
Nephrotic Syndrome, NPHS2-related	1 in 35,000	< 1 in 1,000,000
Neuronal Ceroid Lipofuscinosis, CLN6-related	1 in 20,000	< 1 in 1,000,000
Niemann-Pick Disease Type C1	1 in 19,000	< 1 in 1,000,000
Niemann-Pick Disease Type C2	<pre>< 1 in 50,000</pre>	< 1 in 1,000,000
Niemann-Pick Disease, SMPD1-related	1 in 25,000	< 1 in 1,000,000
Nijmegen Breakage Syndrome	1 in 16,000	< 1 in 1,000,000
Ornithine Transcarbamylase Deficiency	<pre>< 1 in 1,000,000</pre>	1 in 140,000
PCCA-related Propionic Acidemia	1 in 4,200	< 1 in 1,000,000
PCCB-related Propionic Acidemia	1 in 22,000	< 1 in 1,000,000
PCDH15-related Disorders	1 in 3,300	< 1 in 1,000,000
Pendred Syndrome	1 in 8,200	< 1 in 1,000,000
Peroxisome Biogenesis Disorder Type 1	1 in 16,000	< 1 in 1,000,000
Peroxisome Biogenesis Disorder Type 3	1 in 44,000	< 1 in 1,000,000
Peroxisome Biogenesis Disorder Type 4	1 in 9,300	< 1 in 1,000,000
Peroxisome Biogenesis Disorder Type 5	< 1 in 71,000	< 1 in 1,000,000
Peroxisome Biogenesis Disorder Type 6	< 1 in 50,000	< 1 in 1,000,000
Phenylalanine Hydroxylase Deficiency	1 in 4,800	1 in 940,000
POMGNT-related Disorders	< 1 in 12,000	< 1 in 1,000,000
Pompe Disease	1 in 4,000	< 1 in 1,000,000
PPT1-related Neuronal Ceroid Lipofuscinosis	1 in 7,700	< 1 in 1,000,000
Primary Carnitine Deficiency	1 in 11,000	< 1 in 1,000,000
Primary Hyperoxaluria Type 1	1 in 17,000	< 1 in 1,000,000
Primary Hyperoxaluria Type 2	< 1 in 50,000	< 1 in 1,000,000
Primary Hyperoxaluria Type 3	1 in 13,000	< 1 in 1,000,000
Pycnodysostosis	1 in 43,000	< 1 in 1,000,000
Pyruvate Carboxylase Deficiency	1 in 25,000	< 1 in 1,000,000
Rhizomelic Chondrodysplasia Punctata Type 1	1 in 16,000	< 1 in 1,000,000
RTEL1-related Disorders	< 1 in 50,000	< 1 in 1,000,000
Sandhoff Disease	1 in 18,000	< 1 in 1,000,000
Short-chain Acyl-CoA Dehydrogenase Deficiency	1 in 11,000	< 1 in 1,000,000
Sjogren-Larsson Syndrome	< 1 in 12,000	< 1 in 1,000,000
SLC26A2-related Disorders	1 in 16,000	< 1 in 1,000,000
Smith-Lemli-Opitz Syndrome	1 in 9,400	< 1 in 1,000,000
Spastic Paraplegia Type 15	<pre>< 1 in 50,000</pre>	< 1 in 1,000,000
Spastic Farapiegia Type 15		< 1101,000,000
Spinal Muscular Atrophy	Negative for g.27134T>G SNP SMN1: 2 copies 1 in 770	1 in 110,000
Spondylothoracic Dysostosis	< 1 in 50,000	< 1 in 1,000,000
TGM1-related Autosomal Recessive Congenital Ichthyosis	1 in 22,000	< 1 in 1,000,000
TPP1-related Neuronal Ceroid Lipofuscinosis	1 in 30,000	< 1 in 1,000,000
Tyrosine Hydroxylase Deficiency	<pre>< 1 in 50,000</pre>	< 1 in 1,000,000
Tyrosinemia Type I	1 in 16,000	< 1 in 1,000,000
Tyrosinemia Type II	1 in 25,000	< 1 in 1,000,000
USH1C-related Disorders	1 in 30,000	< 1 in 1,000,000
USH2A-related Disorders	1 in 4,100	< 1 in 1,000,000
Usher Syndrome Type 3	1 in 41,000	< 1 in 1,000,000
Very-long-chain Acyl-CoA Dehydrogenase Deficiency	1 in 18,000	< 1 in 1,000,000

MALE DONOR 10625 DOB: Ethnicity: Mixed or Other Caucasian Barcode: 11004512969797 FEMALE N/A

Disease	DONOR 10625 Residual Risk	Reproductive Risk
Wilson Disease	1 in 6,500	< 1 in 1,000,000
X-linked Adrenal Hypoplasia Congenita	< 1 in 1,000,000	< 1 in 1,000,000
X-linked Adrenoleukodystrophy	1 in 90,000	1 in 42,000
X-linked Alport Syndrome	Not calculated	Not calculated
X-linked Juvenile Retinoschisis	< 1 in 1,000,000	1 in 40,000
X-linked Myotubular Myopathy	Not calculated	Not calculated
X-linked Severe Combined Immunodeficiency	< 1 in 1,000,000	1 in 200,000
Xeroderma Pigmentosum Group A	< 1 in 50,000	< 1 in 1,000,000
Xeroderma Pigmentosum Group C	1 in 7,300	< 1 in 1,000,000

15 Crawford St., STE 100 Needham, MA 02494 (p) 626-350-0537 (f) 626-454-1667 Lab Director: Arash Radfar M.D. CLIA: 22D0957540

Patient Information: 10625, Donor DOB: Sex: M MR#: Patient#: FT-PT8945604

Accession: FT-7295842 Test#: FT-TS15053910 Specimen Type: Saliva Collected: Dec 20.2024 Accession: N/A

Not Tested

Partner Information:

FINAL RESULTS

Carrier for **ONE** genetic condition Genetic counseling is recommended.

Physician: Kuan, James ATTN: Martinez, Lupe Phoenix Sperm Bank 4915 25th Avenue NE, Ste 204W Seattle, WA 98105 Phone: (206) 588-1484

Laboratory: Fulgent Therapeutics LLC CAP#: 8042697 CLIA#: 05D2043189 Laboratory Director: Dr. Amar Jariwala Report Date: Jan 21,2025

TEST PERFORMED

Custom Beacon Preconception Carrier	
Screening Panel	
(2 Gono Panol: DPVD and POLG: gono coquencing wi	iŧ

(2 Gene Panel: *DPYD and POLG*; gene sequencing with deletion and duplication analysis)

Condition and Gene	Inheritance	10625, Donor	Partner
POLG-related disorders	AR	Carrier	N/A
POLG		c.1399G>A (p.Ala467Thr)	

INTERPRETATION:

Notes and Recommendations:

- PLEASE NOTE: Heterozygous carriers for POLG-related disorders are generally asymptomatic, however, some POLG variants can also cause autosomal dominant progressive external ophthalmoplegia. Genotype-phenotype correlations and determination of the inheritance pattern based on the variant alone are not possible at this time (PubMed: 20301791). As such, correlation with clinical and family history is recommended. Consultation with a medical geneticist and/or other specialist is recommended.
- Based on these results, this individual is positive for a carrier mutation in 1 gene. Carrier screening for the reproductive
 partner is recommended to accurately assess the risk for any autosomal recessive conditions. A negative result reduces, but
 does not eliminate, the chance to be a carrier for any condition included in this screen. Please see the supplemental table for
 details.
- This carrier screening test does not screen for all possible genetic conditions, nor for all possible mutations in every gene tested. This report does not include variants of uncertain significance; only variants classified as pathogenic or likely pathogenic at the time of testing, and considered relevant for reproductive carrier screening, are reported. Please see the gene specific notes for details. Please note that the classification of variants can change over time.
- Patients may wish to discuss any carrier results with blood relatives, as there is an increased chance that they are also carriers. These results should be interpreted in the context of this individual's clinical findings, biochemical profile, and family history.
- Gene specific notes and limitations may be present. See below.
- Genetic counseling is recommended. Available genetic counselors and additional resources can be found at the National Society of Genetic Counselors (NSGC; https://www.nsgc.org)

POLG-RELATED DISORDERS

Patient	10625, Donor	Partner
Result	 Carrier 	N/A
Variant Details	POLG (NM_002693.3) c.1399G>A (p.Ala467Thr)	N/A

What is POLG-related disorders?

Multiple conditions have been associated with the POLG gene including progressive external ophthalmoplegia (PEO), Alpers-Huttenlocher syndrome, ataxia neuropathy spectrum disorder, and myocerebrohepatopathy. POLG-related disorders have overlapping signs and symptoms.

- PEO is characterized by weakness of the eye muscles and eyelids (ptosis). Some individuals may also experience muscle weakness in other parts of the body including the heart (cardiomyopathy) and ataxia. The clinical features can vary widely even within the same family.
- Alpers-Huttenlocher syndrome is characterized by seizures, regression of mental and motor function, and liver disease. Additional symptoms may include ataxia, neuropathy, and vision and hearing loss.
- Ataxia neuropathy spectrum disorder is characterized by significant ataxia and neuropathy. Most patients also have seizures and, similar to other POLG-related disorders, liver disease, vision loss, and migraines are common.
- Myocerebrohepatopathy is similar to Alpers-Huttenlocher and includes muscle weakness, intellectual disability, developmental delay, and liver disease. The distinction of the disease is from the toxic build-up of lactic acid in the body that can lead to kidney disease, pancreatic insufficiency, and recurrent nausea and vomiting. Seizures are not present.

What is my risk of having an affected child?

POLG-related disorders are inherited in an autosomal recessive manner. If the patient and the partner are both carriers, the risk for an affected child is 1 in 4 (25%).

What kind of medical management is available?

The treatment and prognosis for these conditions depends on the symptoms and severity.

- Treatment of PEO includes tools used to improve vision such as glasses or patches. Surgery may also be useful if the ptosis becomes obstructive. Most people will have a normal life expectancy unless other overlapping POLG-related disorders also develop.
- The prognosis for both Alpers-Huttenlocher syndrome is poor. Most individuals do not survive past childhood.
- The treatment of ataxia neuropathy spectrum is mainly supportive therapies and management of seizures, if present. The
 prognosis depends on the severity of the symptoms, but the impact the ataxia has on daily function is significant. Psychiatric
 illness, including depression, is common.
- The treatment of myocerebrohepatopathy consists of supportive therapies and management of lactic acidosis build-up to
 prevent further medical complications. The prognosis depends on the severity of the symptoms, but the impact on daily
 function is significant.

What mutation was detected?

The detected heterozygous variant was NM_002693.3:c.1399G>A (p.Ala467Thr). This variant, p.Ala467Thr, has been reported in both homozygous and compound heterozygous states in multiple patients with several conditions including progressive external ophthalmoplegias, sensory ataxic neuropathy, dysarthria/dysphagia and external ophthalmoplegia (SANDO), Alpers syndrome, and childhood-onset intractable epilepsy (PubMed: 11431686, 22616202, 21686371, 23448099, 18783964, 33486010). In the simple heterozygous state, this variant has only thus far been associated with ptosis (PubMed: 15917273). Functional studies reproducing the p.Ala467Thr variant by site-directed mutagenesis in baculovirus-infected insect cells demonstrated that this

15 Crawford St., STE 100 Needham, MA 02494 (p) 626-350-0537 (f) 626-454-1667 Lab Director: Arash Radfar M.D. CLIA: 22D0957540

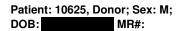
substitution reduced overall efficiency of DNA synthesis to <4% of wild-type activity (PubMed: 16024923).Based on the population frequency of this variant, it most likely acts in an autosomal recessive fashion. The laboratory classifies this variant as pathogenic.

GENES TESTED:

Custom Beacon Preconception Carrier Screening Panel - 2 Genes

This analysis was run using the Custom Beacon Preconception Carrier Screening Panel gene list. 2 genes were tested with 100.0% of targets sequenced at >20x coverage. For more gene-specific information and assistance with residual risk calculation, see the SUPPLEMENTAL TABLE.

DPYD, POLG


METHODS:

Genomic DNA was isolated from the submitted specimen indicated above (if cellular material was submitted). DNA was barcoded, and enriched for the coding exons of targeted genes using hybrid capture technology. Prepared DNA libraries were then sequenced using a Next Generation Sequencing technology. Following alignment to the human genome reference sequence (assembly GRCh37), variants were detected in regions of at least 10x coverage. For this specimen, 100.00% and 100.00% of coding regions and splicing junctions of genes listed had been sequenced with coverage of at least 10x and 20x, respectively, by NGS or by Sanger sequencing. The remaining regions did not have 10x coverage, and were not evaluated. Variants were interpreted manually using locus specific databases, literature searches, and other molecular biological principles. To minimize false positive results, any variants that do not meet internal quality standards are confirmed by Sanger sequencing. Variants classified as pathogenic, likely pathogenic, or risk allele which are located in the coding regions and nearby intronic regions (+/- 20bp) of the genes listed above are reported. Variants outside these intervals may be reported but are typically not guaranteed. When a single pathogenic or likely pathogenic variant is identified in a clinically relevant gene with autosomal recessive inheritance, the laboratory will attempt to ensure 100% coverage of coding sequences either through NGS or Sanger sequencing technologies ("fill-in"). All genes listed were evaluated for large deletions and/or duplications. However, single exon deletions or duplications will not be detected in this assay, nor will copy number alterations in regions of genes with significant pseudogenes. Putative deletions or duplications are analyzed using Fulgent Germline proprietary pipeline for this specimen. Bioinformatics: The Fulgent Germline v2019.2 pipeline was used to analyze this specimen.

LIMITATIONS:

General Limitations

These test results and variant interpretation are based on the proper identification of the submitted specimen, accuracy of any stated familial relationships, and use of the correct human reference sequences at the queried loci. In very rare instances, errors may result due to mix-up or co-mingling of specimens. Positive results do not imply that there are no other contributors, genetic or otherwise, to future pregnancies, and negative results do not rule out the genetic risk to a pregnancy. Official gene names change over time. Fulgent uses the most up to date gene names based on HUGO Gene Nomenclature Committee (https://www.genenames.org) recommendations. If the gene name on report does not match that of ordered gene, please contact the laboratory and details can be provided. Result interpretation is based on the available clinical and family history information for this individual, collected published information, and Alamut annotation available at the time of reporting. This assay is not designed or validated for the detection of low-level mosaicism or somatic mutations. This assay will not detect certain types of genomic aberrations such as translocations, inversions, or repeat expansions other than specified genes. DNA alterations in regulatory regions or deep intronic regions (greater than 20bp from an exon) may not be detected by this test. Unless otherwise indicated, no additional assays have been performed to evaluate genetic changes in this specimen. There are technical limitations on the ability of DNA sequencing to detect small insertions and deletions. Our laboratory uses a sensitive detection algorithm, however these types of alterations are not detected as reliably as single nucleotide variants. Rarely, due to systematic chemical, computational, or human error, DNA variants may be missed. Although next generation sequencing technologies and our bioinformatics analysis significantly reduce the confounding contribution of pseudogene sequences or other highly-homologous sequences, sometimes these may still interfere with the technical ability of the assay to identify pathogenic alterations in both sequencing and deletion/duplication analyses. Deletion/duplication analysis can identify alterations of genomic regions which include one whole gene (buccal swab specimens and whole blood specimens) and are two or more contiguous exons in size (whole blood specimens only); single exon deletions or duplications may occasionally be identified, but are not routinely detected by this test. When novel DNA duplications are identified, it is not possible to discern the genomic location or orientation of the duplicated segment, hence the effect of the duplication cannot be predicted. Where deletions are detected, it is not always possible to determine whether the predicted product will remain in-frame or not. Unless otherwise indicated, deletion/duplication analysis has not been performed in regions that have been sequenced by Sanger.

15 Crawford St., STE 100 Needham, MA 02494 (p) 626-350-0537 (f) 626-454-1667 Lab Director: Arash Radfar M.D. CLIA: 22D0957540

Gene Specific Notes and Limitations

No gene specific limitations apply to the genes on the tested panel.

SIGNATURE:

Shuxi Liu, Ph.D., FACMG Laboratory Director, Fulgent

Gao

Dr. Harry Gao, DABMG, FACMG on 1/21/2025 Laboratory Director, Fulgent

DISCLAIMER:

This test was developed and its performance characteristics determined by Fulgent Therapeutics LLC CAP #8042697 CLIA #05D2043189; 4399 Santa Anita Ave., El Monte, CA, 91731. It has not been cleared or approved by the FDA. The laboratory is regulated under CLIA as qualified to perform high-complexity testing. This test is used for clinical purposes. It should not be regarded as investigational or for research. Since genetic variation, as well as systematic and technical factors, can affect the accuracy of testing, the results of testing should always be interpreted in the context of clinical and familial data. For assistance with interpretation of these results, healthcare professionals may contact us directly at 626-350-0537 or by email at info@fulgentgenetics.com. It is recommended that patients receive appropriate genetic counseling to explain the implications of the test result, including its residual risks, uncertainties and reproductive or medical options.

To view the supplemental table describing the carrier frequencies, detection rates, and residual risks associated with the genes tested on any Beacon panel, please visit the following link:

Beacon Expanded Carrier Screening Supplemental Table