

Patient Information:
DOB:
Sex: M
MR#: BFA0178
Patient#:

Partner Information: Not Tested

Accession: N/A

Test# Specimen Type: Saliva Swab Collected: Dec 13,2022

REVISED RESULTS

VPS13B

Accession:

Carrier for **ONE** genetic Genetic counseling is recommended.

Physician: Shaikly, Valerie ATTN: Shaikly, Valerie Fertility Genetics 1 Lanswood Park Elmstead Market, Essex CO7 7FD GB Dr. Hanlin (Harry) Gao Phone: 7711197938

Laboratory: **Fulgent Genetics** CAP#: 8042697 CLIA#: 05D2043189 Laboratory Director: Report Date: Sep 18,2023

TEST PERFORMED

c condition	176 N	latched Fors Mal	e with	
Condition	XL			
		ene Panel; gene seque letion and duplication a		
	Inheritance		Partner	
	AR	Carrier	N/A	
		c.11907dup (p.Ser3970Glnfs*22)		

INTERPRETATION:

Condition and Gene Cohen syndrome

REVISED REPORT SUMMARY

Original Report Date: Jan 04, 2023

Changes to Original Report: This report was revised to correct the patient's MR#. The results and interpretation of the original report remain unchanged.

Notes and Recommendations:

- Based on these results, this individual is positive for a carrier mutation in 1 gene. The risk estimates below are quantified based on general population carrier frequencies. Carrier screening for the reproductive partner is recommended to accurately assess this risk:
 - There is a 1/2000 chance of having a child affected with Cohen syndrome, a VPS13B-related condition.
- Testing for the 3 nucleotide (CGG) repeat sequence in the FMR1 gene was performed to screen for the carrier status for Fragile X Syndrome. 20 CGG repeats were detected. These results are within the normal range. Therefore, this individual is not considered to be a carrier for Fragile X Syndrome.
- Testing for copy number changes in the SMN1 gene was performed to screen for the carrier status of Spinal Muscular Atrophy. The results for this individual are within the normal range for non-carriers. See Limitations section for more informátion.
- This carrier screening test does not screen for all possible genetic conditions, nor for all possible mutations in every gene tested. Individuals with negative test results may still have up to a 3-4% risk to have a child with a birth defect due to genetic and/or environmental factors.
- Patients may wish to discuss any carrier results with blood relatives, as there is an increased chance that they are also carriers. These results should be interpreted in the context of this individual's clinical findings, biochemical profile, and family history.
- Gene-specific notes and limitations may be present. See below.
- This report does not include variants of uncertain significance.
- Genetic counseling is recommended. Contact your physician about the available options for genetic counseling.

COHEN SYNDROME

Patient		Partner
Result	Carrier	N/A
Variant Details	<i>VPS13B</i> (NM_017890.4) c.11907dup (p.Ser3970Glnfs*22)	N/A

What is Cohen syndrome?

Cohen syndrome is characterized by developmental delay, intellectual disability, microcephaly (small head size), and failure to thrive in infancy and childhood. Babies may have feeding and breathing difficulties due to weak muscle tone. Individuals may also have characteristic facial features including an open mouth, eye issues (nearsightedness and retinal dystrophy), joint hypermobility, overly friendly behavior, recurrent infections due to neutropenia (low white blood cells), and truncal obesity that develops in adolescence. Signs and symptoms vary among affected individuals.

What is my risk of having an affected child?

The exact incidence of Cohen syndrome is unknown; therefore, the carrier risk is very low (1/500). However, this condition has been observed at a high prevalence (1 in 500) in the Ohio Geauga Old Order Amish settlement in the United States. Cohen syndrome is inherited in an autosomal recessive manner. If both partners are carriers for this condition, there is a 25% (1 in 4) risk to have an affected child.

What kind of medical management is available?

Treatment may include physical, occupational, and speech therapies and early intervention to address weak muscle tone, joint hypermobility, developmental delay and psychomotor dysfunction; correction of eye issues with use of eye glasses or surgery; and psychosocial support for affected individuals and their families. Those with Cohen syndrome should also have annual eye and hematologic evaluations and growth and weight gain should be monitored.

What mutation was detected?

The detected heterozygous variant was NM_017890.4:c.11907dup (p.Ser3970Glnfs*22). This frameshift variant is predicted to introduce a premature stop codon in the last exon and result in a truncated protein. While this variant is not anticipated to cause nonsense-mediated mRNA decay (PubMed: 25741868, 30192042), it is expected to disrupt the last 54 (1.3%) amino acids of the original protein. This frameshift variant has been reported in the compound heterozygous state and heterozygous state in 2 patients with Cohen syndrome (PubMed: 15141358, 16648375). The laboratory classifies this variant as likely pathogenic.

GENES TESTED:

176 Matched Fors Male with XL - 177 Genes

This analysis was run using the 176 Matched Fors Male with XL gene list. 177 genes were tested with 99.10% of targets sequenced at >20x coverage. For more gene specific information and assistance with residual risk calculation, see the SUPPLEMENTAL TABLE.

ABCC8	ABCD1	ACADM	ACADS	ACADVL	ADA
AGA	AGL	AGXT	AIRE	ALDH3A2	ALDOB
ALG6	ALMS1	ALPL	AMT	ARG1	ARSA
ASL	ASPA	ASS1	ATM	ATP7A	ATP7B
BBS1	BBS10	BBS12	BBS2	BCKDHA	BCKDHB
BCS1L	BLM	BTD	CAPN3	CBS	CFTR
CLN3	CLN5	CLN6	CLN8	CLRN1	COL4A3
COL4A4	CPS1	CPT1A	CPT2	CRYL1	CTNS
CTSK	CYP11B1	CYP21A2	CYP27A1	DBT	DHCR7
DLD	DMD	DYSF	ELP1	ERCC6	ERCC8
EVC	EVC2	FAH	FANCA	FANCC	FKRP
FKTN	FMR1	G6PC	GAA	GALC	GALK1
GALT	GBA	GCDH	GJB2	GJB6	GLA
GLB1	GLDC	GNE	GNPTAB	GNPTG	GRHPR
HADHA	HBA1	HBA2	HBB	HEXA	HEXB
HGSNAT	HLCS	HMGCL	HOGA1	HSD17B4	HYLS1
IDS	IDUA	IL2RG	IVD	KCNJ11	LAMA2
LAMA3	LAMB3	LAMC2	LIPA	LRPPRC	MAN2B1
MCOLN1	MEFV	MESP2	MKS1	MLC1	MMAA
MMAB	MMACHC	MPI	MUT	MYO7A	NAGLU
NBN	NEB	NPC1	NPC2	NPHS1	NPHS2
NR0B1	OPA3	OTC	PAH	PC	PCCA
PCCB	PCDH15	PEX1	PEX10	PEX12	PEX2
PEX6	PEX7	PKHD1	PMM2	POMGNT1	PPT1
PROP1	PTS	RMRP	RS1	RTEL1	SACS
SGCA	SGCB	SGCD	SGCG	SGSH	SLC12A6
SLC17A5	SLC22A5	SLC26A2	SLC26A4	SLC37A4	SMN1
SMPD1	STAR	TAT	TCIRG1	TGM1	TH
TMEM216	TPP1	TTPA	USH1C	USH2A	VPS13B
XPA	XPC	ZFYVE26			

METHODS:

Genomic DNA was isolated from the submitted specimen indicated above (if cellular material was submitted). DNA was barcoded, and enriched for the coding exons of targeted genes using hybrid capture technology. Prepared DNA libraries were then sequenced using a Next Generation Sequencing technology. Following alignment to the human genome reference sequence (assembly GRCh37), variants were detected in regions of at least 10x coverage. For this specimen, 99.27% and 99.10% of coding regions and splicing junctions of genes listed had been sequenced with coverage of at least 10x and 20x, respectively, by NGS or by Sanger sequencing. The remaining regions did not have 10x coverage, and were not evaluated. Variants were interpreted manually using locus specific databases, literature searches, and other molecular biological principles. To minimize false positive results, any variants that do not meet internal quality standards are confirmed by Sanger sequencing. Variants classified as pathogenic, likely pathogenic, or risk allele which are located in the coding regions and nearby intronic regions (+/- 20bp) of the genes listed above are reported. Variants outside these intervals may be reported but are typically not guaranteed. When a single pathogenic or likely pathogenic variant is identified in a clinically relevant gene with autosomal recessive inheritance, the laboratory will attempt to ensure 100% coverage of coding sequences either through NGS or Sanger sequencing technologies ("fill-in"). All genes listed were evaluated for large deletions and/or duplications. However, single exon deletions or duplications will not be detected in this assay, nor will copy number alterations in regions of genes with significant pseudogenes. Putative deletions or duplications are analyzed using Fulgent Germline proprietary pipeline for this specimen. New York patients: diagnostic findings are confirmed by Sanger. MLPA, or gPCR; exception SNV variants in genes for which confirmation of NGS results has been performed >=10 times may not

be confirmed if identified with high quality by NGS. Bioinformatics: The Fulgent Germline v2019.2 pipeline was used to analyze this specimen.

LIMITATIONS:

General Limitations

These test results and variant interpretation are based on the proper identification of the submitted specimen, accuracy of any stated familial relationships, and use of the correct human reference sequences at the queried loci. In very rare instances, errors may result due to mix-up or co-mingling of specimens. Positive results do not imply that there are no other contributors, genetic or otherwise, to future pregnancies, and negative results do not rule out the genetic risk to a pregnancy. Official gene names change over time. Fulgent uses the most up to date gene names based on HUGO Gene Nomenclature Committee (https://www.genenames.org) recommendations. If the gene name on report does not match that of ordered gene, please contact the laboratory and details can be provided. Result interpretation is based on the available clinical and family history information for this individual, collected published information, and Alamut annotation available at the time of reporting. This assay is not designed or validated for the detection of low-level mosaicism or somatic mutations. This assay will not detect certain types of genomic aberrations such as translocations, inversions, or repeat expansions other than specified genes. DNA alterations in regulatory regions or deep intronic regions (greater than 20bp from an exon) may not be detected by this test. Unless otherwise indicated, no additional assays have been performed to evaluate genetic changes in this specimen. There are technical limitations on the ability of DNA sequencing to detect small insertions and deletions. Our laboratory uses a sensitive detection algorithm, however these types of alterations are not detected as reliably as single nucleotide variants. Rarely, due to systematic chemical, computational, or human error. DNA variants may be missed. Although next generation sequencing technologies and our bioinformatics analysis significantly reduce the confounding contribution of pseudogene sequences or other highly-homologous sequences, sometimes these may still interfere with the technical ability of the assay to identify pathogenic alterations in both sequencing and deletion/duplication analyses. Deletion/duplication analysis can identify alterations of genomic regions which include one whole gene (buccal swab specimens and whole blood specimens) and are two or more contiguous exons in size (whole blood specimens only); single exon deletions or duplications may occasionally be identified, but are not routinely detected by this test. When novel DNA duplications are identified, it is not possible to discern the genomic location or orientation of the duplicated segment, hence the effect of the duplication cannot be predicted. Where deletions are detected, it is not always possible to determine whether the predicted product will remain in-frame or not. Unless otherwise indicated, deletion/duplication analysis has not been performed in regions that have been sequenced by Sanger.

Gene Specific Notes and Limitations

BTD: If detected, the variant NM 001370658.1:c.1270G>C (p.Asp424His) will not be reported as this variant is associated with low disease penetrance and is primarily associated with reduced enzyme activity when homozygous. <u>CFTR:</u> Analysis of the intron 8 polymorphic region (e.g. IVS8-5T allele) is only performed if the p.Arg117His (R117H) mutation is detected. Single exon deletion/duplication analysis is limited to deletions of previously reported exons: 1, 2, 3, 11, 19, 20, 21. CRYL1: As mutations in the CRYL1 gene are not known to be associated with any clinical condition, sequence variants in this gene are not analyzed. However, to increase copy number detection sensitivity for large deletions including this gene and a neighboring on gene on the panel (GJB6, also known as connexin 30), this gene was evaluated for copy number variation. CYP11B1: The current testing method is not able to reliably detect certain pathogenic variants in this gene due to the interference by highly homologous regions. This analysis is not designed to detect or rule-out copy-neutral chimeric CYP11B1/CYP11B2 gene. CYP21A2: Significant pseudogene interference and/or reciprocal exchanges between the CYP21A2 gene and its pseudogene, CYP21A1P, have been known to occur and may impact results. As such, the relevance of variants reported in this gene must be interpreted clinically in the context of the clinical findings, biochemical profile, and family history of each patient. The variants c.188A>T (p.His63Leu), c.844G>T (p.Val282Leu), c.1174G>A (p.Ala392Thr), and c.1360C>T (p.Pro454Ser) in CYP21A2 will not be routinely reported as these variants are primarily associated with non-classic congenital adrenal hyperplasia and low disease penetrance. Additionally, the variant c.955C>T (p.Gln319Ter) is in the region with pseudogene interference, and the probability of this variant occurring in the real gene is greater than 50%. When observed, this variant will be reported as a possible carrier without LR-PCR. The confirmation test is recommended if the second reproductive partner is tests positive for variants in CYP21A2. <u>DMD:</u> Single exon deletion/duplication analysis is limited to exons with >1 patient reported in the UMD database (http://www.umd.be/DMD/W_DMD/index.html), accessed Dec 29,2020 and all out-of-frame exons after exon 3. This includes deletion of exon 1, and duplication of exon 2, and del/dup for exons 3,6~8,11,12,17~22,43~46,48,50~56,58~63,65~70,75,76 and 78. Single-exon detection is limited to blood samples. FMR1: The exact size of alleles >200 CGG repeats cannot be determined; these alleles are pathogenic for X-Linked Fragile X Syndrome. Alleles with <10 repeats may fail to amplify; these alleles are benign. The repeat length for

Patient:	Sex: M;
DOB:	;MR#: BFA0178

this gene may vary by +/- 1 repeat unit. Methylation is not analyzed. Small degrees of size mosaicism, including gonadal mosaicism, may not be detected. <u>GALT</u>: In general, the D2 "Duarte" allele is not reported if detected, but can be reported upon request. While this allele can cause positive newborn screening results, it is not known to cause clinical symptoms in any state (PubMed: 25473725, 30593450). <u>GBA</u>: The current testing method may not be able to reliably detect certain pathogenic variants in the GBA gene due to homologous recombination between the pseudogene and the functional gene. <u>HBA1</u>: The phase of heterozygous alterations in the *HBA1* gene cannot be determined, but can be confirmed through parental testing. <u>HBA2</u>: The phase of heterozygous alterations in the *HBA2* gene cannot be determined, but can be confirmed through parental testing. <u>NEB2</u>: This gene contains a 32-kb triplicate region (exons 82-105) which is not amenable to sequencing and deletion/duplication analysis. <u>NPHS2</u>: If detected, the variant NM_014625.3:c.686G>A (p.Arg229Gln) will not be reported as this variant is not significantly associated with disease when homozygous or in the compound heterozygous state with variants in exons 1-6 of NPHS2. <u>SMN1</u>: The current testing method detects sequencing variants in exon 7 and copy number variations in exons 7-8 of the SMN1 gene (NM_022874.2). Sequencing and deletion/duplication analysis are not performed on any other region in this gene. About 5%-8% of the population have two copies of SMN1 on a single chromosome and a deletion on the other chromosome, known as a [2+0] configuration (PubMed: 20301526). The current testing method cannot directly detect carriers with a [2+0] SMN1 configuration, but can detect linkage between the silent carrier allele and certain population-specific single nucleotide changes. As a result, a negative result for carrier testing greatly reduces but does not eliminate the chance that a person is a carrier. Only abnormal results will be reported.

SIGNATURE:

Z Gao

Dr. Harry Gao, DABMG, FACMG on 9/18/2023 09:36 AM PDT Electronically signed

DISCLAIMER:

This test was developed and its performance characteristics determined by **Fulgent Genetics**. It has not been cleared or approved by the FDA. The laboratory is regulated under CLIA as qualified to perform high-complexity testing. This test is used for clinical purposes. It should not be regarded as investigational or for research. Since genetic variation, as well as systematic and technical factors, can affect the accuracy of testing, the results of testing should always be interpreted in the context of clinical and familial data. For assistance with interpretation of these results, healthcare professionals may contact us directly at (626) 350-0537 or info@fulgentgenetics.com. It is recommended that patients receive appropriate genetic counseling to explain the implications of the test result, including its residual risks, uncertainties and reproductive or medical options.

_			Supplemental Table				
					Detection	Post-test	
Gene	Condition	Inheritance	Ethnicity	Carrier Rate	Rate	Carrier Probability*	Residual Risk*
ABCC8	Familial hyperinsulinism	AR	General Population	1 in 112	98%	1 in 5,551	1 in 2,486,848
			Ashkenazi Jewish Population	1 in 44	98%	1 in 2,151	1 in 378,576
			Finnish Population	1 in 25	98%	1 in 1,201	1 in 120,100
ABCD1	Adrenoleukodystrophy, X-linked	XL	Middle-Eastern Population General Population	1 in 25 1 in 21,000	98%	1 in 1,201 1 in 2,099,901	1 in 120,100 1 in 8,399,804
ACADM	Medium-chain acyl-CoA dehydrogenase (MCAD)	AR	General Population	1 in 69	98%	1 in 3,401	1 in 938,676
/ IO/ ID/II	deficiency	7.11.	Caucasian / European Population	1 in 52	99%	1 in 5,101	1 in 1,061,008
			East Asian Population	1 in 198	99%	1 in 19,701	<1 in 10 million
10100			Native American Population	1 in 43	96%	1 in 1,051	1 in 180,772
ACADS	Short-chain acyl-coA dehydrogenase (SCAD) deficiency	AR	General Population African/African American Population	1 in 85 1 in 52	99% 99%	1 in 8,401 1 in 5,101	1 in 2,856,340 1 in 1,061,008
			Caucasian / European Population	1 in 76	99%	1 in 7,501	1 in 2,280,304
			Middle-Eastern Population	1 in 52	99%	1 in 5,101	1 in 1,061,008
		A D	South Asian/Indian Population	1 in 51	99%	1 in 5,001	1 in 1,020,204
ACADVL	Very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency	AR	General Population Middle-Eastern Population	1 in 118 1 in 74	93% 93%	1 in 1,672 1 in 1,044	1 in 789,184 1 in 309,024
			Native American Population	1 in 61	93%	1 in 858	1 in 209,352
			South Asian/Indian Population	1 in 73	93%	1 in 1,030	1 in 300,760
ADA	Adenosine deaminase deficiency	AR	General Population	1 in 224	93%	1 in 3,187	1 in 2,855,552
AGA	Aspartylglucosaminuria	AR	General Population	<1 in 500	98%	1 in 24,951	<1 in 10 million 1 in 994,284
AGL	Glycogen storage disease type III	AR	Finnish Population General Population	1 in 71 1 in 158	98% 95%	1 in 3,501 1 in 3,141	1 in 1,985,112
AGL	Ciybogen storage disease type in	AIT	Faroese Population	1 in 28	95%	1 in 541	1 in 60,592
			Inuit Population	1 in 25	95%	1 in 481	1 in 48,100
			North African Jewish Population	1 in 37	95%	1 in 721	1 in 106,708
AGXT	Primary hyperoxaluria type 1	AR	General Population Caucasian / European Population	1 in 120 1 in 173	99% 99%	1 in 11,901 1 in 17,201	1 in 5,712,480 <1 in 10 million
AIRE	Autoimmune polyendocrinopathy syndrome type I	AR	General Population	1 in 150	99%	1 in 7,451	1 in 4,470,600
			Finnish Population	1 in 79	98%	1 in 3,901	1 in 1,232,716
ALDH3A2	Sjögren-Larsson syndrome	AR	General Population	1 in 250	98%	1 in 12,451	<1 in 10 million
ALDOB	Hereditary fructose intolerance	AR	General Population	1 in 122	99%	1 in 12,101	1 in 5,905,288
			African/African American Population Caucasian / European Population	1 in 250 1 in 67	99% 99%	1 in 24,901 1 in 6,601	<1 in 10 million 1 in 1,769,068
			Middle-Eastern Population	1 in 97	99%	1 in 9,601	1 in 3,725,188
ALG6	Congenital disorder of glycosylation type lc	AR	General Population	<1 in 500	98%	1 in 24,951	<1 in 10 million
ALMS1	Alstrom syndrome	AR	General Population	1 in 500	98%	1 in 24,951	<1 in 10 million
ALPL	Hypophosphatasia	AR	General Population	1 in 158	95%	1 in 3,141	1 in 1,985,112
			Caucasian / European Population Mennonite Population	1 in 274 1 in 25	95% 95%	1 in 5,461 1 in 481	1 in 5,985,256 1 in 48,100
AMT	Glycine encephalopathy	AR	General Population	1 in 373	98%	1 in 18,601	<1 in 10 million
			Finnish Population	1 in 117	98%	1 in 5,801	1 in 2,714,868
ARG1	Arginase deficiency	AR	General Population	1 in 296	98%	1 in 14,751	<1 in 10 million
ARSA	Metachromatic leukodystrophy	AR	General Population	1 in 100	99%	1 in 9,901	1 in 3,960,400
			Caucasian / European Population Yemenite Jewish Population	1 in 78 1 in 75	99% 99%	1 in 7,701 1 in 7,401	1 in 2,402,712 1 in 2,220,300
ASL	Argininosuccinate lyase deficiency	AR	General Population	1 in 132	90%	1 in 1,311	1 in 692,208
ASPA	Canavan disease	AR	General Population	1 in 300	97%	1 in 9,968	<1 in 10 million
			Ashkenazi Jewish Population	1 in 55	96%	1 in 1,351	1 in 297,220
ASS1	Citrullinemia	AR	General Population	1 in 119	96% 06%	1 in 2,951	1 in 1,404,676
ATM	Ataxia-telangiectasia	AR	East Asian Population General Population	1 in 132 1 in 100	96% 92%	1 in 3,276 1 in 1,239	1 in 1,729,728 1 in 495,600
ATIM ATP7A	Menkes disease	XL	General Population		92 % 99%	1 in 4,999,901	<1 in 10 million
ATP7B	Wilson disease	AR	General Population	1 in 87	98%	1 in 4,301	1 in 1,496,748
			Caucasian / European Population	1 in 42	98%	1 in 2,051	1 in 344,568
550 /		4.5	Ashkenazi Jewish Population	1 in 70	98%	1 in 3,451	1 in 966,280
BBS1	Bardet-Biedl syndrome type 1	AR	General Population	1 in 367	99%	1 in 36,601	<1 in 10 million
BBS10 BBS12	Bardet-Biedl syndrome type 10 Bardet-Biedl syndrome type 12	AR AR	General Population General Population	1 in 395 1 in 791	99% 99%	1 in 39,401 1 in 79,001	<1 in 10 million <1 in 10 million
BBS12 BBS2	Bardet-Biedi syndrome type 12 Bardet-Biedi syndrome 2	AR	General Population	1 in 791	99% 99%	1 in 62,001	<1 in 10 million
5502	Bardor Biodi Syndromo E	,	Ashkenazi Jewish Population	1 in 107	99%	1 in 10,601	1 in 4,537,228
BBS2	Retinitis Pigmentosa 74	AR	General Population	1 in 621	99%	1 in 62,001	<1 in 10 million
			Ashkenazi Jewish Population	1 in 107	99%	1 in 10,601	1 in 4,537,228

FD Patient#:

ifulgent

Accession#: DocID:

FD Patient#: PAGE 7 of 13

Gfulgent

			Supplemental Table				
0				0	Detection	Post-test	
Gene	Condition	Inheritance	Ethnicity	Carrier Rate	Rate	Carrier Probability*	Residual Risk*
DYSF	Limb-girdle muscular dystrophy type 2B	AR	General Population Japanese Population Libyan Jewish Population	<1 in 500 1 in 332 1 in 18	95% 95% 95%	1 in 9,981 1 in 6,621 1 in 341	<1 in 10 million 1 in 8,792,688 1 in 24,552
ELP1	Familial Dysautonomia	AR	General Population Ashkenazi Jewish Population	1 in 300 1 in 31	99% 99%	1 in 29,901 1 in 3,001	<1 in 10 million 1 in 372,124
ERCC6	De Sanctis-Cacchione syndrome	AR	General Population Japanese Population	1 in 500 1 in 74	99% 99%	1 in 49,901 1 in 7,301	<1 in 10 million 1 in 2,161,096
ERCC6	Cockayne syndrome type B	AR	General Population Japanese Population	1 in 500 1 in 74	99% 99%	1 in 49,901 1 in 7,301	<1 in 10 million 1 in 2,161,096
ERCC8	Cockayne syndrome type A	AR	General Population	1 in 822	98%	1 in 41,051	<1 in 10 million
EVC	Weyers acrofacial dysostosis, EVC-related	AR	General Population Amish Population	1 in 142 1 in 7	98% 98%	1 in 7,051 1 in 301	1 in 4,004,968 1 in 8,428
EVC	Ellis-van Creveld syndrome, EVC-related	AR	General Population Amish Population	1 in 142 1 in 7	98% 98%	1 in 7,051 1 in 301	1 in 4,004,968 1 in 8,428
EVC2	Weyers acrodental dysostosis, EVC2-related	AR	General Population Amish Population	1 in 240 1 in 7	98% 98%	1 in 11,951 1 in 301	<1 in 10 million 1 in 8,428
EVC2	Ellis-van Creveld syndrome, EVC2-related	AR	General Population Amish Population	1 in 240 1 in 7	98% 98%	1 in 11,951 1 in 301	<1 in 10 million 1 in 8,428
FAH	Tyrosinemia, type 1	AR	General Population Ashkenazi Jewish Population Finnish Population French Canadian Population South Asian/Indian Population	1 in 99 1 in 150 1 in 122 1 in 66 1 in 172	95% 95% 95% 95% 95%	1 in 1,961 1 in 2,981 1 in 2,421 1 in 1,301 1 in 3,421	1 in 776,556 1 in 1,788,600 1 in 1,181,448 1 in 343,464 1 in 2,353,648
FANCA	Fanconi anemia group A	AR	General Population Moroccan Jewish Indian Jewish Population	1 in 239 1 in 100 1 in 27	99% 99% 99%	1 in 23,801 1 in 9,901 1 in 2,601	<1 in 10 million 1 in 3,960,400 1 in 280,908
FANCC	Fanconi anemia group C	AR	General Population Ashkenazi Jewish Population	1 in 535 1 in 99	99% 99%	1 in 53,401 1 in 9,801	<1 in 10 million 1 in 3,881,196
FKRP	Muscular dystrophy-dystroglycanopathy, FKRP- related	AR	General Population	1 in 158	98%	1 in 7,851	1 in 4,961,832
FKTN	Muscular dystrophy-dystroglycanopathy, FKTN- related	AR	General Population Ashkenazi Jewish Population Japanese Population	<1 in 500 1 in 150 1 in 82	99% 99% 99%	1 in 49,901 1 in 14,901 1 in 8,101	<1 in 10 million 1 in 8,940,600 1 in 2,657,128
FKTN	Fukuyama congenital muscular dystrophy	AR	General Population Ashkenazi Jewish Population Japanese Population	<1 in 500 1 in 150 1 in 82	99% 99% 99%	1 in 49,901 1 in 14,901 1 in 8,101	<1 in 10 million 1 in 8,940,600 1 in 2,657,128
FMR1	Fragile X Syndrome Intermediate Allele	XL	General Population Ashkenazi Jewish Population	1 in 259 1 in 115	99% 99%	1 in 25,801 1 in 11,401	1 in 103,204 1 in 45,604
FMR1	Fragile X Syndrome Premutation	XL	General Population Ashkenazi Jewish Population	1 in 259 1 in 115	99% 99%	1 in 25,801 1 in 11,401	1 in 103,204 1 in 45,604
G6PC	Glycogen storage disease, type 1a	AR	General Population Ashkenazi Jewish Population	1 in 177 1 in 64	95% 95%	1 in 3,521 1 in 1,261	1 in 2,492,868 1 in 322,816
GAA	Pompe disease	AR	General Population African/African American Population East Asian Population Ashkenazi Jewish Population	1 in 100 1 in 60 1 in 112 1 in 76	98% 98% 98% 99%	1 in 4,951 1 in 2,951 1 in 5,551 1 in 7,501	1 in 1,980,400 1 in 708,240 1 in 2,486,848 1 in 2,280,304
GALC	Krabbe disease	AR	General Population Israeli Druze Population	1 in 158 1 in 6	99% 99%	1 in 15,701 1 in 501	1 in 9,923,032 1 in 12,024
GALK1	Galactokinase deficiency	AR	General Population Irish Population	1 in 110 1 in 64	95% 95%	1 in 2,181 1 in 1,261	1 in 959,640 1 in 322,816
GALT	Galactosemia	AR	General Population African/African American Population Ashkenazi Jewish Population	1 in 110 1 in 94 1 in 127	99% 99% 99%	1 in 10,901 1 in 9,301 1 in 12,601	1 in 4,796,440 1 in 3,497,176 1 in 6,401,308
GBA	Gaucher disease	AR	General Population African/African American Population Ashkenazi Jewish Population	1 in 77 1 in 35 1 in 15	99% 99% 99%	1 in 7,601 1 in 3,401 1 in 1,401	1 in 2,341,108 1 in 476,140 1 in 84,060
GCDH	Glutaric aciduria, type I	AR	General Population Amish Population	1 in 87 1 in 9	98% 98%	1 in 4,301 1 in 401	1 in 1,496,748 1 in 14,436

	Supplemental Table							
Gene	Condition	Inheritance	Ethnicity	Carrier Rate	Detection Rate	Post-test Carrier Probability*	Residual Risk*	
GJB2	Nonsyndromic hearing loss 1A	AR	General Population African/African American Population Ashkenazi Jewish Population Caucasian / European Population Latino Population Middle-Eastern Population South Asian/Indian Population	1 in 42 1 in 25 1 in 21 1 in 33 1 in 100 1 in 83 1 in 148	99% 99% 99% 99% 99% 99%	1 in 4,101 1 in 2,401 1 in 2,001 1 in 3,201 1 in 9,901 1 in 8,201 1 in 14,701	1 in 688,968 1 in 240,100 1 in 168,084 1 in 422,532 1 in 3,960,400 1 in 2,722,732 1 in 8,702,992	
GJB6	GJB6-CRYL1 related nonsyndromic hearing loss	AR	General Population	1 in 423	99%	1 in 42,201	<1 in 10 million	
GLA	Fabry disease	XL	General Population	1 in 25,000	99%	1 in 2,499,901		
GLB1	GM1-gangliosidosis	AR	General Population Maltese Population Roma Population	1 in 134 1 in 30 1 in 50	99% 99% 99%	1 in 13,301 1 in 2,901 1 in 4,901	1 in 7,129,336 1 in 348,120 1 in 980,200	
GLB1	Mucopolysaccharidosis type IVB (Morquio syndrome B)	AR	General Population Maltese Population Roma Population	1 in 134 1 in 30 1 in 50	99% 99% 99%	1 in 13,301 1 in 2,901 1 in 4,901	1 in 7,129,336 1 in 348,120 1 in 980,200	
GLDC	Glycine encephalopathy, GLDC-related	AR	General Population British Columbia Canadian Population Finnish Population	1 in 193 1 in 125 1 in 117	98% 99% 99%	1 in 9,601 1 in 12,401 1 in 11,601	1 in 7,411,972 1 in 6,200,500 1 in 5,429,268	
GNE	Inclusion body myopathy type 2 (Nonaka myopathy)	AR	General Population Iranian Jewish Population	<1 in 500 1 in 11	99% 99%	1 in 49,901 1 in 1,001	1 in 99,802,000 1 in 44,044	
GNPTAB	Mucolipidosis II alpha/beta	AR	General Population	<1 in 500	95%	1 in 9,981	<1 in 10 million	
GNPTAB GNPTG	Mucolipidosis III alpha/beta Mucolipidosis III gamma	AR AR	General Population General Population	<1 in 500 <1 in 500	95% 95%	1 in 9,981 1 in 9,981	<1 in 10 million <1 in 10 million	
GRHPR	Primary hyperoxaluria type II	AR	General Population	<1 in 500	93 <i>%</i> 99%	1 in 49,901	<1 in 10 million	
HADHA	Trifunctional protein deficiency	AR	General Population Finnish Population	<1 in 500 1 in 124	98% 98%	1 in 24,951 1 in 6,151	<1 in 10 million 1 in 3,050,896	
HADHA	Long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency	AR	General Population Finnish Population	<1 in 500 1 in 124	98% 98%	1 in 24,951 1 in 6,151	<1 in 10 million 1 in 3,050,896	
HBA1	Alpha thalassemia	AR	General Population General Population† Southeast Asian Population Southeast Asian Population† Mediterranean Population† African/African American Population	1 in 18 1 in 1000 ≤1 in 7 ≤1 in 14 ≤1 in 6 1 in 500 1 in 30	98% 98% 98% 98% 98% 98%	1 in 860 1 in 860 ≤1 in 305 ≤1 in 305 ≤1 in 229 ≤1 in 229 1 in 1,451	1 in 3,440,364 1 in 3,440,364 ≤1 in 17,228 ≤1 in 17,228 ≤1 in 457,556 ≤1 in 457,556 1 in 5,804,000	
HBA2	Alpha thalassemia	AR	General Population General Population† Southeast Asian Population Southeast Asian Population† Mediterranean Population Mediterranean Population† African/African American Population	1 in 18 1 in 1000 ≤1 in 7 ≤1 in 14 ≤1 in 6 1 in 500 1 in 30	98% 98% 98% 98% 98% 98%	1 in 860 1 in 860 ≤1 in 305 ≤1 in 305 ≤1 in 229 ≤1 in 229 1 in 1,451	1 in 3,440,364 1 in 3,440,364 ≤1 in 17,228 ≤1 in 17,228 ≤1 in 457,556 ≤1 in 457,556 1 in 5,804,000	
HBB	Sickle cell disease	AR	General Population African/African American Population East Asian Population Latino Population Mediterranean Population South Asian/Indian Population	1 in 158 1 in 10 1 in 50 1 in 128 1 in 3 1 in 25	95% 95% 95% 95% 95% 95%	1 in 3,141 1 in 181 1 in 981 1 in 2,541 1 in 41 1 in 481	1 in 1,985,112 1 in 7,240 1 in 196,200 1 in 1,300,992 1 in 492 1 in 48,100	
HBB	Hemoglobin C disease	AR	General Population African/African American Population East Asian Population Latino Population Mediterranean Population South Asian/Indian Population	1 in 158 1 in 10 1 in 50 1 in 128 1 in 3 1 in 25	95% 95% 95% 95% 95% 95%	1 in 3,141 1 in 181 1 in 981 1 in 2,541 1 in 41 1 in 481	1 in 1,985,112 1 in 7,240 1 in 196,200 1 in 1,300,992 1 in 492 1 in 48,100	
HBB	Beta thalassemia	AR	General Population African/African American Population East Asian Population Latino Population Mediterranean Population South Asian/Indian Population	1 in 158 1 in 10 1 in 50 1 in 128 1 in 3 1 in 25	95% 95% 95% 95% 95% 95%	1 in 3,141 1 in 181 1 in 981 1 in 2,541 1 in 41 1 in 481	1 in 1,985,112 1 in 7,240 1 in 196,200 1 in 1,300,992 1 in 492 1 in 48,100	
HEXA	Tay-Sachs disease	AR	General Population Ashkenazi Jewish Population Moroccan Jewish Population	1 in 300 1 in 27 1 in 110	99% 99% 99%	1 in 29,901 1 in 2,601 1 in 10,901	<1 in 10 million 1 in 280,908 1 in 4,796,440	
HEXB	Sandhoff disease	AR	General Population	1 in 600	98%	1 in 29,951	<1 in 10 million	
			•			,		

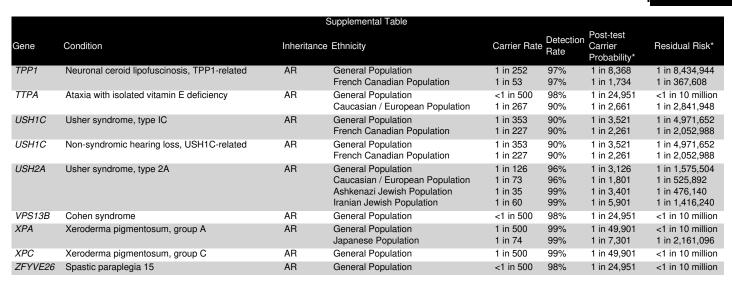
ifulgent

			Supplemental Table		_		
Gene	Condition	Inheritance		Carrier Rate	Bate (Post-test Carrier Probability*	Residual Risk*
HGSNAT	Mucopolysaccharidosis type IIIC (Sanfilippo syndrome C)	AR	General Population Caucasian / European Population	1 in 434 1 in 345	98%	1 in 21,651 1 in 17,201	<1 in 10 million <1 in 10 million
HLCS	Holocarboxylase synthetase deficiency	AR	General Population	1 in 500		1 in 24,951	<1 in 10 million
HMGCL	3-hydroxy-3-methylglutaryl-CoA lyase deficiency	AR	General Population	<1 in 500		1 in 24,951	<1 in 10 million
HOGA1	Primary hyperoxaluria type III	AR	General Population	1 in 184		1 in 18,301	<1 in 10 million
HSD17B4	D-bifunctional protein deficiency	AR	General Population	1 in 158		1 in 7,851	1 in 4,961,832
HYLS1	Hydrolethalus syndrome	AR	General Population Finnish Population	<1 in 500 1 in 50	98%	1 in 24,951 1 in 2,451	<1 in 10 million 1 in 490,200
IDS	Mucopolysaccharidosis type II (Hunter syndrome)	XL	General Population	1 in 50,000		1 in 555,545	1 in 2,222,204
IDUA	Mucopolysaccharidosis, type I (Hurler syndrome)	AR	General Population Caucasian / European Population	<1 in 500 1 in 153	95%	1 in 9,981 1 in 3,041	<1 in 10 million 1 in 1,861,092
IL2RG	Severe combined immunodeficiency, X-linked	XL	General Population	1 in 25,000	99%	1 in 2,499,901	1 in 9,999,804
IVD	Isovaleric Acidemia	AR	General Population African/African American Population Caucasian / European Population East Asian Population	1 in 167 1 in 100 1 in 115 1 in 407	90% 90%	1 in 1,661 1 in 991 1 in 1,141 1 in 4,061	1 in 1,109,548 1 in 396,400 1 in 524,860 1 in 6,611,308
KCNJ11	Congenital hyperinsulinism	AR	General Population Caucasian / European Population	1 in 423 1 in 232		1 in 42,201 1 in 23,101	<1 in 10 million <1 in 10 million
KCNJ11	Permanent neonatal diabetes mellitus	AR	General Population Caucasian / European Population	1 in 423 1 in 232		1 in 42,201 1 in 23,101	<1 in 10 million <1 in 10 million
LAMA2	Muscular dystrophy, LAMA2-related	AR	General Population Caucasian / European Population	<1 in 500 1 in 125		1 in 49,901 1 in 12,401	<1 in 10 million 1 in 6,200,500
LAMA3	Junctional epidermolysis bullosa, LAMA3-related	AR	General Population	1 in 781	98%	1 in 39,001	<1 in 10 million
LAMA3	Laryngo-onycho-cutaneous syndrome	AR	General Population	1 in 781	98%	1 in 39,001	<1 in 10 million
LAMB3	Junctional epidermolysis bullosa, LAMB3-related	AR	General Population	1 in 781	98%	1 in 39,001	<1 in 10 million
LAMC2	Junctional epidermolysis bullosa, LAMC2-related	AR	General Population	1 in 781	98%	1 in 39,001	<1 in 10 million
LIPA	Lysosomal acid lipase deficiency	AR	General Population Caucasian / European Population Iranian Jewish Population	<1 in 500 1 in 112 1 in 26	99%	1 in 49,901 1 in 11,101 1 in 2,501	<1 in 10 million 1 in 4,973,248 1 in 260,104
LRPPRC	Leigh syndrome with Complex IV deficiency	AR	General Population Faroese Population French Canadian Population	1 in 447 1 in 21 1 in 22	98%	1 in 22,301 1 in 1,001 1 in 1,051	<1 in 10 million 1 in 84,084 1 in 92,488
MAN2B1	Alpha-Mannosidosis	AR	General Population Caucasian / European Population	1 in 354 1 in 274		1 in 35,301 1 in 27,301	<1 in 10 million <1 in 10 million
MCOLN1	Mucolipidosis IV	AR	General Population Ashkenazi Jewish Population	1 in 300 1 in 100		1 in 29,901 1 in 9,901	<1 in 10 million 1 in 3,960,400
MEFV	Familial Mediterranean fever	AR	General Population Mediterranean Population	1 in 20 1 in 7		1 in 1,901 1 in 61	1 in 152,080 1 in 1,708
MESP2	Spondylocostal dysostosis	AR	General Population	<1 in 500	98%	1 in 24,951	<1 in 10 million
MKS1	Bardet-Biedl syndrome 13	AR	General Population Finnish Population	1 in 260 1 in 47		1 in 12,951 1 in 2,301	<1 in 10 million 1 in 432,588
MKS1	Joubert syndrome 28	AR	General Population Finnish Population	1 in 260 1 in 47		1 in 12,951 1 in 2,301	<1 in 10 million 1 in 432,588
MKS1	Meckel syndrome 1	AR	General Population Finnish Population	1 in 260 1 in 47		1 in 12,951 1 in 2,301	<1 in 10 million 1 in 432,588
MLC1	Megalencephalic leukoencephalopathy with subcortical cysts	AR	General Population Libyan Jewish Population	<1 in 500 1 in 40		1 in 49,901 1 in 3,901	<1 in 10 million 1 in 624,160
MMAA	Methylmalonic aciduria, cblA type	AR	General Population	1 in 301		1 in 10,001	<1 in 10 million
MMAB	Methylmalonic aciduria, cblB type	AR	General Population	1 in 435	98%	1 in 21,701	<1 in 10 million
MMACHC	Methylmalonic aciduria and homocystinuria, cblC type	AR	General Population	1 in 134	90%	1 in 1,331	1 in 713,416
MPI	Congenital disorder of glycosylation type lb	AR	General Population	<1 in 500	98%	1 in 24,951	<1 in 10 million
MUT	Methylmalonic acidemia, MUT-related	AR	General Population East Asian Population Middle-Eastern Population	1 in 195 1 in 53 1 in 52	96%	1 in 4,851 1 in 1,301 1 in 1,276	1 in 3,783,780 1 in 275,812 1 in 265,408
MUT	Methylmalonic aciduria-methylmalonyl-CoA mutase deficiency	AR	General Population	1 in 100		1 in 9,901	1 in 3,960,400
MYO7A	Usher syndrome, type 1B	AR	General Population East Asian Population	1 in 206 1 in 62		1 in 10,251 1 in 3,051	1 in 8,446,824 1 in 756,648
MYO7A	Non-syndromic hearing loss, MYO7A-related	AR	General Population East Asian Population	1 in 206 1 in 62		1 in 10,251 1 in 3,051	1 in 8,446,824 1 in 756,648

fulgent

		8	Supplemental Table				
Gene	Condition	Inheritance	Ethnicity	Carrier Rate	Detection Rate	Post-test Carrier Probability*	Residual Risk*
NAGLU	Mucopolysaccharidosis type IIIB (Sanfilippo syndrome B)	AR	General Population Caucasian / European Population East Asian Population	<1 in 500 1 in 346 1 in 298	99% 99% 99%	1 in 49,901 1 in 34,501 1 in 29,701	<1 in 10 millior <1 in 10 millior <1 in 10 millior
NBN	Nijmegen breakage syndrome	AR	General Population	1 in 158	99%	1 in 15,701	1 in 9,923,032
NEB	Nemaline myopathy	AR	General Population Amish Population Ashkenazi Jewish Population Finnish Population	1 in 112 1 in 11 1 in 108 1 in 112	98% 98% 98% 98%	1 in 5,551 1 in 501 1 in 5,351 1 in 5,551	1 in 2,486,848 1 in 22,044 1 in 2,311,632 1 in 2,486,848
NPC1	Niemann-Pick disease, type C1	AR	General Population	1 in 194	90%	1 in 1,931	1 in 1,498,456
NPC2	Niemann-Pick disease, type C2	AR	General Population	1 in 194	99%	1 in 19,301	<1 in 10 million
NPHS1	Congenital nephrotic syndrome, type 1	AR	General Population Finnish Population	1 in 289 1 in 50	98% 98%	1 in 14,401 1 in 2,451	<1 in 10 millior 1 in 490,200
NPHS2	Congenital nephrotic syndrome, type 2	AR	General Population Finnish Population	1 in 289 1 in 50	98% 98%	1 in 14,401 1 in 2,451	<1 in 10 millior 1 in 490,200
NR0B1	Congenital adrenal hypoplasia, X-linked	XL	General Population	1 in 6,250	99%	1 in 624,901	1 in 2,499,804
OPA3	Costeff syndrome	AR	General Population Iraqi Jewish Population	<1 in 500 1 in 50	98% 98%	1 in 24,951 1 in 2,451	<1 in 10 millior 1 in 490,200
OTC	Ornithine transcarbamylase deficiency	XL	General Population	1 in 7,000	90%	1 in 69,991	1 in 279,984
PAH	Phenylalanine Hydroxylase deficiency (Phenylketonuria)	AR	General Population Caucasian / European Population Middle-Eastern Population South East Asian	1 in 93 1 in 63 1 in 74 1 in 59	99% 99% 99% 99%	1 in 9,201 1 in 6,201 1 in 7,301 1 in 5,801	1 in 3,422,772 1 in 1,562,652 1 in 2,161,096 1 in 1,369,036
PC	Pyruvate carboxylase deficiency	AR	General Population	1 in 250	95%	1 in 4,981	1 in 4,981,000
PCCA	Propionic acidemia, PCCA-related	AR	General Population Native American Population	1 in 224 1 in 85	96% 96%	1 in 5,576 1 in 2,101	1 in 4,996,096 1 in 714,340
PCCB	Propionic acidemia, PCCB-related	AR	General Population Native American Population	1 in 224 1 in 85	99% 99%	1 in 22,301 1 in 8,401	<1 in 10 millior 1 in 2,856,340
PCDH15	Non-syndromic hearing loss, PCDH15-related	AR	General Population Ashkenazi Jewish Population	1 in 395 1 in 72	98% 98%	1 in 19,701 1 in 3,551	1 in 78,804 1 in 14,204
PCDH15	Usher syndrome, type 1F	AR	General Population Ashkenazi Jewish Population	1 in 395 1 in 72	98% 98%	1 in 19,701 1 in 3,551	1 in 78,804 1 in 14,204
PEX1	Zellweger syndrome, PEX1-related	AR	General Population	1 in 147	95%	1 in 2,921	1 in 1,717,548
PEX10	Zellweger syndrome, PEX10-related	AR	General Population Japanese Population	1 in 500 1 in 354	95% 95%	1 in 9,981 1 in 7,061	<1 in 10 millior 1 in 9,998,376
PEX12	Zellweger syndrome, PEX12-related	AR	General Population	1 in 373	95%	1 in 7,441	<1 in 10 million
PEX2	Zellweger syndrome, PEX2-related	AR	General Population Ashkenazi Jewish Population	1 in 500 1 in 123	95% 95%	1 in 9,981 1 in 2,441	<1 in 10 million 1 in 1,200,972
PEX6	Zellweger syndrome, PEX6-related	AR	General Population Yemenite Jewish Population	1 in 280 1 in 18	99% 99%	1 in 27,901 1 in 1,701	<1 in 10 million 1 in 122,472
PEX7	Rhizomelic chondrodysplasia punctata, type 1	AR	General Population	1 in 158	99%	1 in 15,701	1 in 9,923,032
PKHD1	Polycystic kidney disease, PKHD1-related	AR	General Population Ashkenazi Jewish Population	1 in 70 1 in 107	98% 98%	1 in 3,451 1 in 5,301	1 in 966,280 1 in 2,268,828
PMM2	Congenital disorder of glycosylation type 1a	AR	General Population Ashkenazi Jewish Population Caucasian / European Population	<1 in 500 1 in 57 1 in 71	99% 99% 99%	1 in 49,901 1 in 5,601 1 in 7,001	<1 in 10 millior 1 in 1,277,028 1 in 1,988,284
POMGNT1	Muscular dystrophy-dystroglycanopathy	AR	General Population Finnish Population	1 in 462 1 in 111	98% 98%	1 in 23,051 1 in 5,501	<1 in 10 million 1 in 2,442,444
POMGNT1	Retinitis pigmentosa 76	AR	General Population Finnish Population	1 in 462 1 in 111	98% 98%	1 in 23,051 1 in 5,501	<1 in 10 million 1 in 2,442,444
PPT1	Neuronal ceroid lipofuscinosis, PPT1-related	AR	General Population Caucasian / European Population Finnish Population	1 in 368 1 in 488 1 in 75	98% 98% 98%	1 in 18,351 1 in 24,351 1 in 3,701	<1 in 10 million <1 in 10 million 1 in 1,110,300
PROP1	Combined pituitary hormone deficiency 2	AR	General Population	1 in 45	98%	1 in 2,201	1 in 396,180
PTS	Tetrahydrobiopterin deficiency	AR	General Population	1 in 354	96%	1 in 8,826	<1 in 10 million
RMRP	Metaphyseal dysplasia without hypotrichosis	AR	General Population Amish Population Finnish Population	<1 in 500 1 in 16 1 in 76	99% 99% 99%	1 in 49,901 1 in 1,501 1 in 7,501	<1 in 10 millior 1 in 96,064 1 in 2,280,304
RMRP	Cartilage-Hair Hypoplasia Anauxetic Dysplasia Spectrum Disorder	AR	General Population Amish Population Finnish Population	<1 in 500 <1 in 500 <1 in 500	99% 99% 99%	1 in 49,901 1 in 49,901 1 in 49,901	<1 in 10 millior <1 in 10 millior <1 in 10 millior
RMRP	Anauxetic dysplasia	AR	General Population Amish Population Finnish Population	<1 in 500 1 in 16 1 in 76	99% 99% 99%	1 in 49,901 1 in 1,501 1 in 7,501	<1 in 10 millior 1 in 96,064 1 in 2,280,304

Accession#: DocID: FD Patient#: PAGE 11 of 13


fulgent

			Supplemental Table				
					Detection	Post-test	
Gene	Condition	Inheritance	Ethnicity	Carrier Rate	Rate	Carrier Probability*	Residual Risk*
RMRP	Cartilage-hair hypoplasia	AR	General Population	<1 in 500	99%	1 in 49,901	<1 in 10 million
			Amish Population	1 in 16	99%	1 in 1,501	1 in 96,064
RS1	Juvenile retinoschisis, X-linked	XL	Finnish Population General Population	1 in 76 1 in 2,500	99% 96%	1 in 7,501 1 in 62,476	1 in 2,280,304 1 in 249,956
RTEL1	Dyskeratosis congenita type 5	AR	General Population	1 in 500	99%	1 in 49,901	<1 in 10 million
			Ashkenazi Jewish Population	1 in 203	99%	1 in 20,201	<1 in 10 million
SACS	Autosomal recessive spastic ataxia of Charlevoix- Saguenay	AR	General Population French Canadian Population	<1 in 500 1 in 19	95% 95%	1 in 9,981 1 in 361	<1 in 10 million 1 in 27,436
SGCA	Limb-girdle muscular dystrophy, type 2D	AR	General Population Caucasian / European Population Finnish Population	<1 in 500 1 in 288 1 in 150	98% 98% 98%	1 in 24,951 1 in 14,351 1 in 7,451	<1 in 10 million <1 in 10 million 1 in 4,470,600
SGCB	Limb-girdle muscular dystrophy, type 2E	AR	General Population Caucasian / European Population	1 in 500 1 in 406	98% 98%	1 in 24,951 1 in 20,251	<1 in 10 million <1 in 10 million
SGCD	Limb-girdle muscular dystrophy, type 2F	AR	General Population	<1 in 500	98%	1 in 24,951	<1 in 10 million
SGCG	Limb-girdle muscular dystrophy, type 2C	AR	General Population Moroccan Population Roma / Gypsy Population	1 in 381 1 in 250 1 in 96	98% 98% 98%	1 in 19,001 1 in 12,451 1 in 4,751	<1 in 10 million <1 in 10 million 1 in 1,824,384
SGSH	Mucopolysaccharidosis IIIA (Sanfilippo syndrome A)	AR	General Population Caucasian / European Population	1 in 454 1 in 253	98% 98%	1 in 22,651 1 in 12,601	<1 in 10 million <1 in 10 million
SLC12A6	Andermann syndrome	AR	General Population	<1 in 500	98%	1 in 24,951	<1 in 10 million
			French Canadian Population	1 in 23	99%	1 in 2,201	1 in 202,492
SLC17A5	Sialic acid storage disorder	AR	General Population Finnish Population	<1 in 500 1 in 100	91% 91%	1 in 5,545 1 in 1,101	<1 in 10 million 1 in 440,400
SLC22A5	Systemic primary carnitine deficiency	AR	General Population African/African American Population	1 in 129 1 in 86	99% 99%	1 in 12,801 1 in 8,501	1 in 6,605,316 1 in 2,924,344
			East Asian Population	1 in 77	99% 99%	1 in 7,601	1 in 2,341,108
			Faroese Population	1 in 9	99%	1 in 801	1 in 28,836
			Pacific Islander Population South Asian/Indian Population	1 in 37 1 in 51	99% 99%	1 in 3,601 1 in 5,001	1 in 532,948 1 in 1,020,204
SLC26A2	Diastrophic dysplasia	AR	General Population	1 in 158	90%	1 in 1,571	1 in 992,872
			Finnish Population	1 in 50	90%	1 in 491	1 in 98,200
SLC26A2	Achondrogenesis, type IB	AR	General Population Finnish Population	1 in 158 1 in 50	90% 90%	1 in 1,571 1 in 491	1 in 992,872 1 in 98,200
SLC26A2	Multiple epiphyseal dysplasia	AR	General Population Finnish Population	1 in 158 1 in 50	90% 90%	1 in 1,571 1 in 491	1 in 992,872 1 in 98,200
SLC26A2	Atelosteogenesis II	AR	General Population Finnish Population	1 in 158 1 in 50	90% 90%	1 in 1,571 1 in 491	1 in 992,872 1 in 98,200
SLC26A4	Pendred syndrome	AR	General Population	1 in 80	98%	1 in 3,951	1 in 1,264,320
			African/African American Population Caucasian / European Population	1 in 76 1 in 88	98% 98%	1 in 3,751 1 in 4,351	1 in 1,140,304 1 in 1,531,552
			East Asian Population	1 in 74	98%	1 in 3,651	1 in 1,080,696
SLC37A4	Glycogen storage disease, type Ib	AR	General Population Ashkenazi Jewish Population	1 in 158 1 in 71	95% 95%	1 in 3,141 1 in 1,401	1 in 1,985,112 1 in 397,884
SMN1	Spinal muscular atrophy	AR	General Population	1 in 54	91%	1 in 590	1 in 127,440
			African/African American Population	1 in 72	71%	1 in 246	1 in 70,848
			Ashkenazi Jewish Population Caucasian / European Population	1 in 67 1 in 47	91% 95%	1 in 734 1 in 921	1 in 196,712 1 in 173,148
			East Asian Population	1 in 59	93%	1 in 830	1 in 195,880
			Latino Population	1 in 68	90%	1 in 671	1 in 182,512
CMANI	Crinel museuler strenky silent service		Sephardic Jewish Population	1 in 34	96%	1 in 826 1 in 590	1 in 112,336
SMN1 SMPD1	Spinal muscular atrophy silent carrier Niemann-Pick disease, type A/B	AR AR	General Population General Population	1 in 54 1 in 250	91% 95%	1 in 4,981	1 in 127,440 1 in 4,981,000
		,	Ashkenazi Jewish Population Latino Population	1 in 115 1 in 106	95% 95%	1 in 2,281 1 in 2,101	1 in 1,049,260 1 in 890,824
STAR	Lipoid congenital adrenal hyperplasia	AR	General Population	<1 in 500	98%	1 in 24,951	<1 in 10 million
TAT	Tyrosinemia, type II	AR	General Population	1 in 250	98%	1 in 12,451	<1 in 10 million
TCIRG1	Osteopetrosis, TCIRG1-related	AR	General Population	1 in 250	98%	1 in 12,451	<1 in 10 million
TGM1	Congenital ichthyosis	AR	General Population	1 in 224	95%	1 in 4,461	1 in 3,997,056
TH	Segawa syndrome	AR	General Population	1 in 224	98%	1 in 11,151	1 in 9,991,296
TMEM216	Joubert syndrome 2	AR	General Population Ashkenazi Jewish Population	1 in 141 1 in 92	98% 98%	1 in 7,001 1 in 4,551	1 in 3,948,564 1 in 1,674,768
TMEM216	Meckel syndrome 2	AR	General Population	1 in 141	98%	1 in 7,001	1 in 3,948,564
	-		Ashkenazi Jewish Population	1 in 92	98%	1 in 4,551	1 in 1,674,768

Accession#: DocID: FD Patient#: PAGE 12 of 13

ifulgent

* For genes that have tested negative

† The carrier frequency for alpha thalassemia trait cis is described in rows marked with a dagger symbol.

Abbreviations: AR, autosomal recessive; XL, X-linked

Patient Information: DOB Sex: M MR#: BFA0178 Patient#: Accession

Test#

Accession: N/A

Partner Information:

Not Tested

Specimen Type: Saliva Swab Collected: Apr 09,2024

UPDATED REPORT SUMMARY

Original Report Date: Apr 22, 2024

Changes to Original Report: The overall result has changed from "Negative" to "Carrier" of Factor V Leiden.

Reasoning/Justification: The common Factor 5 "Leiden" allele is not typically reported as this variant is associated with low disease penetrance as described in the gene-specific limitations below. As per the clinician's request, we have updated this report as a one-time courtesy to include the Factor V Leiden variant.

UPDATED RESULTS	TEST PERFORMED					
Carrier for ONE genetic condition Genetic counseling is recommended.	Single Gene Carrier Screening: F5 (1 Gene Panel: <i>F5</i> ; gene sequencing with deletion and duplication analysis)					
Condition and Gene with Low Clinical Implications	Inheritance		Partner			
Factor V deficiency F5	AR	Carrier c.1601G>A (p.Arg534G	N/A iln)			

INTERPRETATION:

Notes and Recommendations:

- Based on these results, this individual is positive for a carrier mutation in 1 gene. Carrier screening for the reproductive ٠ partner is recommended to accurately assess the risk for any autosomal recessive conditions. A negative result reduces, but does not eliminate, the chance to be a carrier for any condition included in this screen. Please see the supplemental table for details.
- This carrier screening test does not screen for all possible genetic conditions, nor for all possible mutations in every gene tested. This report does not include variants of uncertain significance; only variants classified as pathogenic or likely pathogenic at the time of testing, and considered relevant for reproductive carrier screening, are reported. Please see the gene specific notes for details. Please note that the classification of variants can change over time.
- Patients may wish to discuss any carrier results with blood relatives, as there is an increased chance that they are also carriers. These results should be interpreted in the context of this individual's clinical findings, biochemical profile, and family history.
- Gene specific notes and limitations may be present. See below.
- Genetic counseling is recommended. Contact your physician about the available options for genetic counseling.

PAGE 1 of 5

Laboratory: **Fulgent Therapeutics LLC** CAP#: 8042697 CLIA#: 05D2043189 Laboratory Director: Report Date: Apr 30,2024

Physician: Shaikly, Valerie ATTN: Shaikly, Valerie Fertility Genetics 1 Lanswood Park Elmstead Market, Essex CO7 7FD GB Lawrence M, Weiss, MD Phone: 7711197938

FACTOR V DEFICIENCY

Patient		Partner
Result	Carrier	N/A
Variant Details	<i>F5</i> (NM_000130.4) c.1601G>A (p.Arg534Gln)	N/A

What is Factor V deficiency?

Factor V deficiency is a blood disorder characterized by abnormal bleeding, due to defective blood clotting. Symptoms may include easy bruising, frequent nose bleeds, bleeding of the gums and minor spontaneous bleedings under the skin. Females may experience heavier or longer lasting menstruation periods. Bleedings typically arise after injury or surgery and spontaneous bleedings in joints, muscles or gastrointestinal tract are rare. Individuals with factor V deficiency are at increased risk to develop thromboembolism. A specific condition, which is associated only with an increased risk for thromboembolism, factor V Leiden, has been linked to only one specific mutation within the F5 gene, which is commonly found in individuals with European ancestry. This mutation is not known to result in factor V deficiency. Both affected individuals as well as carriers of this particular mutation have an increased risk for thromboembolism.

What is my risk of having an affected child?

Factor V deficiency is inherited in an autosomal recessive manner. If the patient and the partner are both carriers, the risk for an affected child is 1 in 4 (25%).

What kind of medical management is available?

The main complication for individuals with factor V deficiency is prolonged bleeding after injury and surgery. Affected Individuals therefore may need special treatment for any type of surgery, but bleeding can typically be managed. Individuals affected with factor V Leiden thrombophilia, as well as carriers of the mutation, may need special care to reduce the risk of thromboembolism.

What mutation was detected?

The detected heterozygous variant was NM_000130.4:c.1601G>A (p.Arg534GIn). This missense variant, p.Arg534GIn, is previously known as p.Arg506Gln and commonly referred to as "factor V Leiden". This variant has been reported in the heterozygous and homozygous state in many unrelated individuals with venous thrombosis (PubMed: 8164741, 26990548, 25977387, 23677252, 26423325, 8979136, 23799222, 20642359, 26238013). The population frequency of FVL mutation is high. Heterozygous FVL mutation is found in 5% to 10% of white individuals and in up to 30% of patients with VTE. Thus FVL mutation is by far the most common inherited risk factor for VTE. Although conventionally FVL is referred to as a "mutation" it is actually the most common single nucleotide polymorphism within the FV gene. It is very uncommon in African Americans, Hispanics and Asians. FVL homozygotes have only the Leiden protein and an 80-fold increased risk of VTE compared to the general unaffected population. FVL heterozygotes are believed to produce about 50% of Leiden protein and have a 5- to 7-fold increased risk of VTE compared to the general population. It is important to underscore that Factor V Leiden by itself does not cause thrombosis in individuals who are heterozygous for this mutation; usually a precipitating event is required (GeneReviews: NBK1368). Functional analysis of this variant indicates that this change disrupts the activated protein C cleavage site in the F5 protein and leads to a defective anticoagulant response in vitro (PubMed: 8164741, 7911872, 7910348, 8164741, 20051284, 26251307) This variant is the reference allele in GRCh37/hg19. See OMIM gene and variant entries for F5 Leiden (OMIM: 188055, 612309.0001) for further information. The minor allele frequency of this variant is approximately 2% in the general population. The laboratory classifies this variant as pathogenic.

GENES TESTED:

Custom Beacon Carrier Screening Panel - Gene

This analysis was run using the Custom Beacon Carrier Screening Panel gene list. 1 genes were tested with 100.0% of targets sequenced at >20x coverage. For more gene-specific information and assistance with residual risk calculation, see the SUPPLEMENTAL TABLE.

F5

METHODS:

Genomic DNA was isolated from the submitted specimen indicated above (if cellular material was submitted). DNA was barcoded, and enriched for the coding exons of targeted genes using hybrid capture technology. Prepared DNA libraries were then sequenced using a Next Generation Sequencing technology. Following alignment to the human genome reference sequence (assembly GRCh37), variants were detected in regions of at least 10x coverage. For this specimen, 100.00% and 100.00% of coding regions and splicing junctions of genes listed had been sequenced with coverage of at least 10x and 20x, respectively, by NGS or by Sanger sequencing. The remaining regions did not have 10x coverage, and were not evaluated. Variants were interpreted manually using locus specific databases, literature searches, and other molecular biological principles. To minimize false positive results, any variants that do not meet internal quality standards are confirmed by Sanger sequencing. Variants classified as pathogenic, likely pathogenic, or risk allele which are located in the coding regions and nearby intronic regions (+/- 20bp) of the genes listed above are reported. Variants outside these intervals may be reported but are typically not guaranteed. When a single pathogenic or likely pathogenic variant is identified in a clinically relevant gene with autosomal recessive inheritance, the laboratory will attempt to ensure 100% coverage of coding sequences either through NGS or Sanger sequencing technologies ("fill-in"). All genes listed were evaluated for large deletions and/or duplications. However, single exon deletions or duplications will not be detected in this assay, nor will copy number alterations in regions of genes with significant pseudogenes. Putative deletions or duplications are analyzed using Fulgent Germline proprietary pipeline for this specimen. Bioinformatics: The Fulgent Germline v2019.2 pipeline was used to analyze this specimen.

LIMITATIONS:

General Limitations

These test results and variant interpretation are based on the proper identification of the submitted specimen, accuracy of any stated familial relationships, and use of the correct human reference sequences at the queried loci. In very rare instances, errors may result due to mix-up or co-mingling of specimens. Positive results do not imply that there are no other contributors, genetic or otherwise, to future pregnancies, and negative results do not rule out the genetic risk to a pregnancy. Official gene names change over time. Fulgent uses the most up to date gene names based on HUGO Gene Nomenclature Committee (https://www.genenames.org) recommendations. If the gene name on report does not match that of ordered gene, please contact the laboratory and details can be provided. Result interpretation is based on the available clinical and family history information for this individual, collected published information, and Alamut annotation available at the time of reporting. This assay is not designed or validated for the detection of low-level mosaicism or somatic mutations. This assay will not detect certain types of genomic aberrations such as translocations, inversions, or repeat expansions other than specified genes. DNA alterations in regulatory regions or deep intronic regions (greater than 20bp from an exon) may not be detected by this test. Unless otherwise indicated, no additional assays have been performed to evaluate genetic changes in this specimen. There are technical limitations on the ability of DNA sequencing to detect small insertions and deletions. Our laboratory uses a sensitive detection algorithm, however these types of alterations are not detected as reliably as single nucleotide variants. Rarely, due to systematic chemical, computational, or human error, DNA variants may be missed. Although next generation sequencing technologies and our bioinformatics analysis significantly reduce the confounding contribution of pseudogene sequences or other highly-homologous sequences, sometimes these may still interfere with the technical ability of the assay to identify pathogenic alterations in both sequencing and deletion/duplication analyses. Deletion/duplication analysis can identify alterations of genomic regions which include one whole gene (buccal swab specimens and whole blood specimens) and are two or more contiguous exons in size (whole blood specimens only); single exon deletions or duplications may occasionally be identified, but are not routinely detected by this test. When novel DNA duplications are identified, it is not possible to discern the genomic location or orientation of the duplicated segment, hence the effect of the duplication cannot be predicted. Where deletions are detected, it is not always possible to determine whether the predicted product will remain in-frame or not. Unless otherwise indicated, deletion/duplication analysis has not been performed in regions that have been sequenced by Sanger.

Gene Specific Notes and Limitations

<u>F5:</u> The common Factor 5 "Leiden" allele is not typically reported as this variant is associated with low disease penetrance.

SIGNATURE:

Zhenbin Chen, Ph.D., CGMB, FACMG on 4/30/2024 Laboratory Director, Fulgent

DISCLAIMER:

This test was developed and its performance characteristics determined by **Fulgent Therapeutics LLC**. It has not been cleared or approved by the FDA. The laboratory is regulated under CLIA as qualified to perform high-complexity testing. This test is used for clinical purposes. It should not be regarded as investigational or for research. Since genetic variation, as well as systematic and technical factors, can affect the accuracy of testing, the results of testing should always be interpreted in the context of clinical and familial data. For assistance with interpretation of these results, healthcare professionals may contact us directly at (626) 350-0537 or info@fulgentgenetics.com. It is recommended that patients receive appropriate genetic counseling to explain the implications of the test result, including its residual risks, uncertainties and reproductive or medical options.

To view the supplemental table describing the carrier frequencies, detection rates, and residual risks associated with the genes on this test please visit the following link:

Beacon Expanded Carrier Screening Supplemental Table

