

RESULTS RECIPIENT
SEATTLE SPERM BANK
Attn: Jeffrey Olliffe
4915 25th Ave NE Ste 204W

Seattle, WA 98105 Phone: (206) 588-1484 Fax: (206) 466-4696 NPI: 1306838271 Report Date: 11/12/2021 MALE

DONOR 10613

DOB:

Ethnicity: Mixed or Other Caucasian

Sample Type: EDTA Blood Date of Collection: 11/04/2021 Date Received: 11/05/2021 Date Tested: 11/11/2021 Barcode: 11004512971823

Accession ID: CSLWZAZEJ9QMRLY Indication: Egg or sperm donor

Foresight® Carrier Screen

NEGATIVE

FEMALE

N/A

ABOUT THIS TEST

The **Myriad Foresight Carrier Screen** utilizes sequencing, maximizing coverage across all DNA regions tested, to help you learn about your chance to have a child with a genetic disease.

RESULTS SUMMARY

Risk Details	DONOR 10613	Partner
Panel Information	Foresight Carrier Screen Universal Panel Fundamental Plus Panel Fundamental Panel (175 conditions tested)	N/A
All conditions tested A complete list of all conditions tested can be found on page 5.	□ NEGATIVE No disease-causing mutations were detected.	N/A

CLINICAL NOTES

None

NEXT STEPS

• If necessary, patients can discuss residual risks with their physician or a genetic counselor.

MALE DONOR 10613 DOB:

Ethnicity: Mixed or Other

Caucasian

Barcode: 11004512971823

FEMALE N/A

Methods and Limitations

DONOR 10613 [Foresight Carrier Screen]: Sequencing with copy number analysis, spinal muscular atrophy, analysis of homologous regions, and alpha thalassemia (HBA1/HBA2) sequencing with targeted copy number analysis (Assay(s): DTS v3.2).

Sequencing with copy number analysis

High-throughput sequencing and read-depth-based copy number analysis are used to analyze the genes listed in the Conditions Tested section of the report. Except where otherwise noted, the region of interest (ROI) comprises the indicated coding regions and 20 non-coding bases flanking each region. In a minority of cases where genomic features (e.g., long homopolymers) compromise calling fidelity, the affected non-coding bases are excluded from the ROI. The ROI is sequenced to a minimum acceptable read depth, and the sequences are compared to a reference genomic sequence (Genome Reference Consortium Human Build 37 [GRCh37]/hg19). On average, 99% of all bases in the ROI are sequenced at a read depth that is greater than the minimum read depth. Sequence variants may not be detected in areas of lower sequence coverage. Insertions and deletions may not be detected as accurately as single-nucleotide variants. Select genes or regions for which pseudogenes or other regions of homology impede reliable variant detection may be assayed using alternate technology, or they may be excluded from the ROI. *CFTR* and *DMD* testing includes analysis for exon-level deletions and duplications with an average sensitivity of ~99%. Only exon-level deletions are assayed for other genes on the panel and such deletions are detected with a sensitivity of ≥75%. Selected founder deletions may be detected at slightly higher sensitivity. Affected exons and/or breakpoints of copy number variants are estimated from junction reads, where available, or using the positions of affected probes. Only exons known to be included in the region affected by a copy number variant are provided in the variant nomenclature. In some cases, the copy number variant may be larger or smaller than indicated. If *GJB2* is tested, large upstream deletions involving the *GJB6* and/or *CRYL1* genes that may affect the expression of *GJB2* are also analyzed.

Spinal muscular atrophy

Targeted copy number analysis via high-throughput sequencing is used to determine the copy number of exon 7 of the *SMN1* gene. Other genetic variants may interfere with this analysis. Some individuals with two copies of *SMN1* are "silent" carriers with both *SMN1* genes on one chromosome and no copies of the gene on the other chromosome. This is more likely in individuals who have two copies of the *SMN1* gene and are positive for the g.27134T>G single-nucleotide polymorphism (SNP) (PMID: 9199562, 23788250, and 28676062), which affects the reported residual risk; Ashkenazi Jewish or Asian patients with this genotype have a high post-test likelihood of being carriers for SMA and are reported as carriers. The g.27134T>G SNP is only reported in individuals who have two copies of *SMN1*.

Analysis of homologous regions

A combination of high-throughput sequencing, read-depth-based copy number analysis, and targeted genotyping is used to determine the number of functional gene copies and/or the presence of selected loss-of-function variants in certain genes that have homology to other genomic regions. The precise breakpoints of large deletions in these genes cannot be determined but are instead estimated from copy number analysis. Pseudogenes may interfere with this analysis, especially when many pseudogene copies are present.

If CYP21A2 is tested, patients who have one or more additional copies of the CYP21A2 gene and a pathogenic variant may or may not be a carrier of 21-hydroxylase deficient CAH, depending on the chromosomal location of the variants (phase). Benign CYP21A2 gene duplications and/or triplications will only be reported in this context. Some individuals with two functional CYP21A2 gene copies may be "silent" carriers, with two gene copies resulting from a duplication on one chromosome and a gene deletion on the other chromosome. This and other similar rare carrier states, where complementary changes exist between the chromosomes, may not be detected by the assay. Given that the true incidence of non-classic CAH is unknown, the residual carrier and reproductive risk numbers on the report are based only on the published incidence for classic CAH. However, the published prevalence of non-classic CAH is highest in individuals of Ashkenazi Jewish, Hispanic, Italian, and Yugoslav descent. Therefore, the residual and reproductive risks are likely an underestimate for CAH, especially in the aforementioned populations, as they do not account for non-classic CAH.

MALE DONOR 10613 DOB:

Ethnicity: Mixed or Other

Caucasian

Barcode: 11004512971823

FEMALE N/A

Alpha thalassemia (HBA1/HBA2) sequencing with targeted copy number analysis

High-throughput sequencing and read-depth-based copy number analysis are used to identify sequence variation and functional gene copies within the region of interest (ROI) of *HBA1* and *HBA2*, which includes the listed exons plus 20 intronic flanking bases. In a minority of cases where genomic features (e.g., long homopolymers) compromise calling fidelity, the affected intronic bases are not included in the ROI. The ROI is sequenced to a minimum acceptable read depth, and the sequences are compared to a reference genomic sequence (Genome Reference Consortium Human Build 37 [GRCh37]/hg19). On average, 99% of all bases in the ROI are sequenced at a read depth that is greater than the minimum read depth. Sequence variants may not be detected in areas of lower sequence coverage. Insertions and deletions may not be detected as accurately as single-nucleotide variants. For large deletions or duplications in these genes, the precise breakpoints cannot be determined but are instead estimated from copy number analysis. This assay has been validated to detect up to two additional copies of each alpha globin gene. In rare instances where assay results suggest greater than two additional copies are present, this will be noted but the specific number of gene copies observed will not be provided.

Extensive sequence homology exists between *HBA1* and *HBA2*. This sequence homology can prevent certain variants from being localized to one gene over the other. In these instances, variant nomenclature will be provided for both genes. If follow-up testing is indicated for patients with the nomenclature provided for both genes, both *HBA1* and *HBA2* should be tested. Some individuals with four functional alpha globin gene copies may be "silent" carriers, with three gene copies resulting from triplication on one chromosome and a single gene deletion on the other chromosome. This and other similar rare carrier states, where complementary changes exist between the chromosomes, may not be detected by the assay.

Interpretation of reported variants

The classification and interpretation of all variants identified in this assay reflects the current state of Myriad's scientific understanding at the time this report was issued. Variants are classified according to internally defined criteria, which are compatible with the ACMG Standards and Guidelines for the Interpretation of Sequence Variants (PMID: 25741868). Variants that have been determined by Myriad to be disease-causing or likely disease-causing (i.e. pathogenic or likely pathogenic) are reported. Benign variants, variants of uncertain clinical significance (VUS), and variants not directly associated with the specified disease phenotype(s) are not reported. Variant classification and interpretation may change for a variety of reasons, including but not limited to, improvements to classification techniques, availability of additional scientific information, and observation of a variant in more patients. If the classification of one or more variants identified in this patient changes, an updated report reflecting the new classification generally will not be issued. If an updated report is issued, the variants reported may change based on their current classification. This can include changes to the variants displayed in gene specific 'variants tested' sections. Healthcare providers may contact Myriad directly to request updated variant classification information specific to this test result.

Limitations

The MWH Foresight Carrier Screen is designed to detect and report germline (constitutional) alterations. Mosaic (somatic) variation may not be detected, and if it is detected, it may not be reported. If more than one variant is detected in a gene, additional studies may be necessary to determine if those variants lie on the same chromosome or different chromosomes (phase). This test is not designed to detect sex-chromosome copy number variations. If present, sex-chromosome abnormalities may significantly reduce test sensitivity for X-linked conditions. Variant interpretation and residual and reproductive risk estimations assume a normal karyotype and may be different for individuals with abnormal karyotypes. The test does not fully address all inherited forms of intellectual disability, birth defects, or heritable diseases. Furthermore, not all forms of genetic variation are detected by this assay (i.e., duplications [except in specified genes], chromosomal rearrangements, structural abnormalities, etc.). Additional testing may be appropriate for some individuals. Pseudogenes and other regions of homology may interfere with this analysis. In an unknown number of cases, other genetic variation may interfere with variant detection. Rare carrier states where complementary changes exist between the chromosomes may not be detected by the assay. Other possible sources of diagnostic error include sample mix-up, trace contamination, bone marrow transplantation, blood transfusions, and technical or analytical errors.

Detection rates are determined using published scientific literature and/or reputable databases, when available, to estimate the fraction of disease alleles, weighted by frequency, that the methodology is predicted to be able or unable to detect. Detection rates are approximate and only account for analytical sensitivity. Certain variants that have been previously described in the literature may not be reported, if there is insufficient evidence for pathogenicity. Detection rates do not account for the disease specific rates of *de novo* variation.

This test was developed, and its performance characteristics determined by, Myriad Women's Health, Inc. It has not been cleared or approved by the US Food and Drug Administration (FDA). The FDA does not require this test to go through premarket review. This test is used for clinical purposes. It should not be regarded as investigational or for research. This laboratory is certified under the Clinical Laboratory Improvement Amendments of 1988 (CLIA) as qualified to perform high-complexity clinical testing. These results are adjunctive to the ordering physician's evaluation. CLIA Number: #05D1102604.

MALE
DONOR 10613
DOB:

Ethnicity: Mixed or Other

Caucasian

Barcode: 11004512971823

FEMALE N/A

Incidental Findings

Unless otherwise indicated, these results and interpretations are limited to the specific disease panel(s) requested by the ordering healthcare provider. In some cases, standard data analyses may identify genetic findings beyond the region(s) of interest specified by the test, and such findings may not be reported. These findings may include genomic abnormalities with major, minor, or no, clinical significance.

If you have questions or would like more information about any of the test methods or limitations, please contact (888) 268-6795.

Resources

GENOME CONNECT | http://www.genomeconnect.org

Patients can share their reports using research registries such as Genome Connect, an online research registry building a genetics and health knowledge base. Genome Connect provides patients, physicians, and researchers an opportunity to share genetic information to support the study of the impact of genetic variation on health conditions.

SENIOR LABORATORY DIRECTOR

Karla R. Bowles, PhD, FACMG, CGMB

Kenle R. Boules

Report content approved by Karla Bowles, PhD, FACMG, CGMB on Nov 12, 2021

MALE
DONOR 10613
DOB:

Ethnicity: Mixed or Other

Caucasian

Barcode: 11004512971823

FEMALE N/A

Conditions Tested

6-pyruvoyl-tetrahydropterin Synthase Deficiency - Gene: PTS. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000317:1-6. **Detection Rate:** Mixed or Other Caucasian >99%.

Adenosine Deaminase Deficiency - Gene: ADA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000022:1-12. Detection Rate: Mixed or Other Caucasian 98%.

Alpha Thalassemia, HBA1/HBA2-related - Genes: HBA1, HBA2. Autosomal Recessive. Alpha thalassemia (HBA1/HBA2) sequencing with targeted copy number analysis. Exons: NM_000517:1-3; NM_000558:1-3. Variants (16): -(alpha)20.5, --BRIT, --MEDI, --MEDII, --SEA, --THAI or --FIL, -alpha3.7, -alpha4.2, HBA1+HBA2 deletion, Hb Constant Spring, Poly(A) AATAAA>AATA--, Poly(A) AATAAA>AATAAG, Poly(A) AATAAA>AATGAA, anti3.7, anti4.2, del HS-40. Detection Rate: Not calculated due to rarity of disease in this individual's reported ethnicity.

Alpha-mannosidosis - **Gene:** MAN2B1. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000528:1-23. **Detection Rate:** Mixed or Other Caucasian >99%.

Alpha-sarcoglycanopathy - **Gene:** SGCA. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000023:1-9. **Detection Rate:** Mixed or Other Caucasian >99%.

Alstrom Syndrome - Gene: ALMS1. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_015120:1-23. **Detection Rate:** Mixed or Other Caucasian >99%.

Andermann Syndrome - **Gene:** SLC12A6. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_133647:1-25. **Detection Rate:** Mixed or Other Caucasian >99%.

Argininemia - Gene: ARG1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000045:1-8. Detection Rate: Mixed or Other Caucasian 97%. Argininosuccinic Aciduria - Gene: ASL. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001024943:1-16. Detection Rate: Mixed or Other

Aspartylglucosaminuria - **Gene**: AGA. Autosomal Recessive. Sequencing with copy number analysis. **Exons**: NM_000027:1-9. **Detection Rate**: Mixed or Other Caucasian >99%.

Ataxia with Vitamin E Deficiency - Gene: TTPA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000370:1-5. Detection Rate: Mixed or Other Caucasian >99%

Ataxia-telangiectasia - Gene: ATM. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000051:2-63. Detection Rate: Mixed or Other Caucasian 96%.

ATP7A-related Disorders - Gene: ATP7A. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000052:2-23. Detection Rate: Mixed or Other Caucasian 90%.

Autoimmune Polyglandular Syndrome Type 1 - Gene: AIRE. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000383:1-14. **Detection Rate:** Mixed or Other Caucasian >99%.

Autosomal Recessive Osteopetrosis Type 1 - Gene: TCIRG1. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_006019:2-20. **Detection Rate:** Mixed or Other Caucasian 96%.

Autosomal Recessive Polycystic Kidney Disease, PKHD1-related - Gene: PKHD1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_138694 2-67. Detection Rate: Mixed or Other Caucasian >99%.

Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay - Gene: SACS. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_014363 2-10. Detection Rate: Mixed or Other Caucasian 99%.

Bardet-Biedl Syndrome, BBS1-related - Gene: BBS1. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_024649:1-17. **Detection Rate:** Mixed or Other Caucasian >99%.

Bardet-Biedl Syndrome, BBS10-related - Gene: BBS10. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_024685:1-2. **Detection Rate:** Mixed or Other Caucasian >99%.

Bardet-Biedl Syndrome, BBS12-related - Gene: BBS12. Autosomal Recessive. Sequencing with copy number analysis. Exon: NM_152618:2. Detection Rate: Mixed or Other Caucasian >99%.

Bardet-Biedl Syndrome, BBS2-related - Gene: BBS2. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_031885:1-17. **Detection Rate:** Mixed or Other Caucasian >99%.

BCS1L-related Disorders - Gene: BCS1L. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_004328:3-9. **Detection Rate:** Mixed or Other Caucasian >99%.

Beta-sarcoglycanopathy - **Gene:** SGCB. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000232:1-6. **Detection Rate:** Mixed or Other Caucasian >99%.

Biotinidase Deficiency - **Gene**: BTD. Autosomal Recessive. Sequencing with copy number analysis. **Exons**: NM_000060:1-4. **Detection Rate**: Mixed or Other Caucasian >99%.

Bloom Syndrome - Gene: BLM. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000057:2-22. Detection Rate: Mixed or Other Caucasian >99%.

Calpainopathy - Gene: CAPN3. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000070:1-24. Detection Rate: Mixed or Other Caucasian 99%.

Canavan Disease - Gene: ASPA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000049:1-6. Detection Rate: Mixed or Other Caucasian 98%.

Carbamoylphosphate Synthetase I Deficiency - Gene: CPS1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001875:1-38. Detection Rate: Mixed or Other Caucasian >99%.

Carnitine Palmitoyltransferase IA Deficiency - Gene: CPT1A. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001876:2-19. Detection Rate: Mixed or Other Caucasian >99%.

Carnitine Palmitoyltransferase II Deficiency - Gene: CPT2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000098:1-5. Detection Rate: Mixed or Other Caucasian >99%.

Cartilage-hair Hypoplasia - Gene: RMRP. Autosomal Recessive. Sequencing with copy number analysis. Exon: NR_003051:1. Detection Rate: Mixed or Other Caucasian >99%.

Cerebrotendinous Xanthomatosis - Gene: CYP27A1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000784:1-9. Detection Rate: Mixed or Other Caucasian >99%.

Citrullinemia Type 1 - Gene: ASS1. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000050:3-16. **Detection Rate:** Mixed or Other Caucasian >99%.

CLN3-related Neuronal Ceroid Lipofuscinosis - Gene: CLN3. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_001042432 2-16. **Detection Rate:** Mixed or Other Caucasian >99%.

CLN5-related Neuronal Ceroid Lipofuscinosis - Gene: CLN5. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_006493:1-4. Detection Rate: Mixed or Other Caucasian >99%.

CLN8-related Neuronal Ceroid Lipofuscinosis - Gene: CLN8. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_018941:2-3. **Detection Rate:** Mixed or Other Caucasian >99%.

Cohen Syndrome - Gene: VPS13B. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_017890:2-62. **Detection Rate:** Mixed or Other Caucasian 97%.

MALE DONOR 10613

DOB:

Ethnicity: Mixed or Other

Caucasian

Barcode: 11004512971823

Familial Dysautonomia - Gene: ELP1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_003640:2-37. Detection Rate: Mixed or Other Caucasian > 99%.

FEMALE

N/A

Familial Hyperinsulinism, ABCC8-related - Gene: ABCC8. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000352:1-39. Detection Rate: Mixed or Other Caucasian >99%.

Familial Hyperinsulinism, KCNJ11-related - Gene: KCNJ11. Autosomal Recessive. Sequencing with copy number analysis. Exon: NM_000525:1. Detection Rate: Mixed or Other Caucasian >99%.

Familial Mediterranean Fever - Gene: MEFV. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000243:1-10. Detection Rate: Mixed or Other Caucasian >99%.

Fanconi Anemia Complementation Group A - Gene: FANCA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000135:1-43. Detection Rate: Mixed or Other Caucasian 92%.

Fanconi Anemia, FANCC-related - Gene: FANCC. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000136:2-15. Detection Rate: Mixed or Other Caucasian >99%.

FKRP-related Disorders - Gene: FKRP. Autosomal Recessive. Sequencing with copy number analysis. **Exon:** NM_024301:4. **Detection Rate:** Mixed or Other Caucasian >99%.

FKTN-related Disorders - Gene: FKTN. Autosomal Recessive. Sequencing with copy number analysis. **Exons**: NM_001079802:3-11. **Detection Rate**: Mixed or Other Caucasian >99%.

Free Sialic Acid Storage Disorders - Gene: SLC17A5. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_012434:1-11. Detection Rate: Mixed or Other Caucasian 98%.

Galactokinase Deficiency - **Gene:** GALK1. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000154:1-8. **Detection Rate:** Mixed or Other Caucasian >99%.

Galactosemia - Gene: GALT. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000155:1-11. Detection Rate: Mixed or Other Caucasian >99%.

Gamma-sarcoglycanopathy - **Gene**: SGCG. Autosomal Recessive. Sequencing with copy number analysis. **Exons**: NM_000231:2-8. **Detection Rate**: Mixed or Other Caucasian 87%.

Gaucher Disease - Gene: GBA. Autosomal Recessive. Analysis of homologous regions. Variants (10): D409V, D448H, IVS2+1G>A, L444P, N370S, R463C, R463H, R496H, V394L, p.L29Afs*18. Detection Rate: Mixed or Other Caucasian 60%.

GJB2-related DFNB1 Nonsyndromic Hearing Loss and Deafness-Gene: \$GJB2\$.

Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_004004:1-2. Detection Rate: Mixed or Other Caucasian >99%.

GLB1-related Disorders - **Gene**: GLB1. Autosomal Recessive. Sequencing with copy number analysis. **Exons**: NM_000404:1-16. **Detection Rate**: Mixed or Other Caucasian >99%.

Glutaric Acidemia, GCDH-related - Gene: GCDH. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000159:2-12. **Detection Rate:** Mixed or Other Caucasian >99%.

Glycine Encephalopathy, AMT-related - Gene: AMT. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000481:1-9. **Detection Rate:** Mixed or Other Caucasian >99%.

Glycine Encephalopathy, GLDC-related - Gene: GLDC. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000170:1-25. **Detection Rate:** Mixed or Other Caucasian 94%.

Glycogen Storage Disease Type la - **Gene**: G6PC1. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000151:1-5. **Detection Rate:** Mixed or Other Caucasian 98%.

Glycogen Storage Disease Type Ib - Gene: SLC37A4. Autosomal Recessive. Sequencing with copy number analysis. **Exons**: NM_001164277 3-11. **Detection Rate**: Mixed or Other Caucasian >99%.

Glycogen Storage Disease Type III - Gene: AGL. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000642:2-34. **Detection Rate:** Mixed or Other Caucasian >99%.

COL4A3-related Alport Syndrome - Gene: COL4A3. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000091:1-52. Detection Rate: Mixed or Other Caucasian 94%.

COL4A4-related Alport Syndrome - Gene: COL4A4. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000092:2-48. Detection Rate: Mixed or Other Caucasian >99%.

Combined Pituitary Hormone Deficiency, PROP1-related - Gene: PROP1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_006261:1-3. Detection Rate: Mixed or Other Caucasian >99%.

Congenital Adrenal Hyperplasia, CYP11B1-related - Gene: CYP11B1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000497:1-9. Detection Rate: Mixed or Other Caucasian 97%.

Congenital Adrenal Hyperplasia, CYP21A2-related - Gene: CYP21A2. Autosomal Recessive. Analysis of homologous regions. Variants (13): CYP21A2 deletion, CYP21A2 duplication, CYP21A2 triplication, G111Vfs*21, I173N, L308Ffs*6, P31L, Q319*, Q319*+CYP21A2dup, R357W, V282L, [I237N;V238E;M240K], c.293-13C>G. Detection Rate: Mixed or Other Caucasian 96%.

Congenital Disorder of Glycosylation Type Ia - Gene: PMM2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000303:1-8. Detection Rate: Mixed or Other Caucasian >99%.

Congenital Disorder of Glycosylation Type Ic - Gene: ALG6. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_013339:2-15. Detection Rate: Mixed or Other Caucasian >99%.

Congenital Disorder of Glycosylation, MPI-related - Gene: MPI. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_002435:1-8. Detection Rate: Mixed or Other Caucasian >99%.

Costeff Optic Atrophy Syndrome - Gene: OPA3. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_025136:1-2. Detection Rate: Mixed or Other Caucasian >99%

Cystic Fibrosis - Gene: CFTR. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000492:1-27. IVS8-5T allele analysis is only reported in the presence of the R117H mutation. Detection Rate: Mixed or Other Caucasian >99%. Cystinosis - Gene: CTNS. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_004937:3-12. Detection Rate: Mixed or Other Caucasian

D-bifunctional Protein Deficiency - Gene: HSD17B4. Autosomal Recessive. Sequencing with copy number analysis. **Exons**: NM_000414:1-24. **Detection Rate**: Mixed or Other Caucasian 98%.

>99%

Delta-sarcoglycanopathy - **Gene:** SGCD. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000337:2-9. **Detection Rate:** Mixed or Other Caucasian 96%.

Dihydrolipoamide Dehydrogenase Deficiency - Gene: DLD. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000108:1-14. Detection Rate: Mixed or Other Caucasian >99%.

Dysferlinopathy - **Gene**: DYSF. Autosomal Recessive. Sequencing with copy number analysis. **Exons**: NM_003494:1-55. **Detection Rate**: Mixed or Other Caucasian 98%.

Dystrophinopathy (Including Duchenne/Becker Muscular Dystrophy) - Gene: DMD. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_004006:1-79. Detection Rate: Mixed or Other Caucasian 99%.

ERCC6-related Disorders - **Gene**: ERCC6. Autosomal Recessive. Sequencing with copy number analysis. **Exons**: NM_000124:2-21. **Detection Rate**: Mixed or Other Caucasian 96%.

ERCC8-related Disorders - **Gene:** ERCC8. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000082:1-12. **Detection Rate:** Mixed or Other Caucasian 97%.

EVC-related Ellis-van Creveld Syndrome - Gene: EVC. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_153717:1-21. **Detection Rate:** Mixed or Other Caucasian 96%.

EVC2-related Ellis-van Creveld Syndrome - Gene: EVC2. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_147127:1-22. **Detection Rate:** Mixed or Other Caucasian 98%.

Fabry Disease - Gene: GLA. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000169:1-7. Detection Rate: Mixed or Other Caucasian 98%.

MALE
DONOR 10613
DOB:

Ethnicity: Mixed or Other

Caucasian

Barcode: 11004512971823

FEMALE N/A

GNE Myopathy - **Gene:** GNE. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_001128227:1-12. **Detection Rate:** Mixed or Other Caucasian >99%.

GNPTAB-related Disorders - Gene: GNPTAB. Autosomal Recessive. Sequencing with copy number analysis. **Exons**: NM_024312:1-21. **Detection Rate**: Mixed or Other Caucasian >99%.

HADHA-related Disorders - Gene: HADHA. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000182:1-20. **Detection Rate:** Mixed or Other Caucasian >99%.

Hb Beta Chain-related Hemoglobinopathy (Including Beta Thalassemia and Sickle Cell Disease) - Gene: HBB. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000518:1-3. Detection Rate: Mixed or Other Caucasian >99%. Hereditary Fructose Intolerance - Gene: ALDOB. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000035:2-9. Detection Rate: Mixed or Other Caucasian >99%.

Hexosaminidase A Deficiency (Including Tay-Sachs Disease) - Gene: HEXA.

Autosomal Recessive. Sequencing with copy number analysis. Exons:

NM_000520:1-14. Detection Rate: Mixed or Other Caucasian >99%.

HMG-CoA Lyase Deficiency - Gene: HMGCL. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000191:1-9. **Detection Rate:** Mixed or Other Caucasian >99%.

Holocarboxylase Synthetase Deficiency - Gene: HLCS. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000411:4-12. **Detection Rate:** Mixed or Other Caucasian >99%.

Homocystinuria, CBS-related - **Gene:** CBS. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000071:3-17. **Detection Rate:** Mixed or Other Caucasian >99%.

Hydrolethalus Syndrome - **Gene:** HYLS1. Autosomal Recessive. Sequencing with copy number analysis. **Exon:** NM_145014:4. **Detection Rate:** Mixed or Other Caucasian >99%.

Hypophosphatasia - **Gene:** ALPL. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000478:2-12. **Detection Rate:** Mixed or Other Caucasian >99%

Isovaleric Acidemia - Gene: IVD. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_002225:1-12. **Detection Rate:** Mixed or Other Caucasian >99%.

Joubert Syndrome 2 - Gene: TMEM216. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_001173990:1-5. **Detection Rate:** Mixed or Other Caucasian >99%.

Junctional Epidermolysis Bullosa, LAMA3-related - Gene: LAMA3. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000227:1-38. Detection Rate: Mixed or Other Caucasian >99%.

Junctional Epidermolysis Bullosa, LAMB3-related - Gene: LAMB3. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000228:2-23. Detection Rate: Mixed or Other Caucasian >99%.

Junctional Epidermolysis Bullosa, LAMC2-related - Gene: LAMC2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_005562:1-23. Detection Rate: Mixed or Other Caucasian >99%.

Krabbe Disease - **Gene:** GALC. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000153:1-17. **Detection Rate:** Mixed or Other Caucasian >99%.

Leigh Syndrome, French-Canadian Type - Gene: LRPPRC. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_133259:1-38. **Detection Rate:** Mixed or Other Caucasian >99%.

Lipoid Congenital Adrenal Hyperplasia - Gene: STAR. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000349:1-7. **Detection Rate:** Mixed or Other Caucasian >99%.

Lysosomal Acid Lipase Deficiency - Gene: LIPA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000235:2-10. Detection Rate: Mixed or Other Caucasian 98%.

Maple Syrup Urine Disease Type Ia - Gene: BCKDHA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000709:1-9. Detection Rate: Mixed or Other Caucasian >99%.

Maple Syrup Urine Disease Type Ib - Gene: BCKDHB. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_183050:1-10. Detection Rate: Mixed or Other Caucasian >99%.

Maple Syrup Urine Disease Type II - Gene: DBT. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001918:1-11. Detection Rate: Mixed or Other Caucasian 97%.

Medium Chain Acyl-CoA Dehydrogenase Deficiency - Gene: ACADM. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000016:1-12. Detection Rate: Mixed or Other Caucasian >99%.

Megalencephalic Leukoencephalopathy with Subcortical Cysts - Gene: MLC1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_015166 2-12. Detection Rate: Mixed or Other Caucasian >99%.

Metachromatic Leukodystrophy - **Gene**: ARSA. Autosomal Recessive. Sequencing with copy number analysis. **Exons**: NM_000487:1-8. **Detection Rate**: Mixed or Other Caucasian >99%.

Methylmalonic Acidemia, cblA Type - Gene: MMAA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_172250:2-7. **Detection Rate:** Mixed or Other Caucasian >99%.

Methylmalonic Acidemia, cblB Type - Gene: MMAB. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_052845:1-9. Detection Rate: Mixed or Other Caucasian >99%.

Methylmalonic Acidemia, MMUT-related - Gene: MMUT. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000255:2-13. Detection Rate: Mixed or Other Caucasian >99%.

Methylmalonic Aciduria and Homocystinuria, cblC Type - Gene: MMACHC. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_015506:1-4. Detection Rate: Mixed or Other Caucasian >99%.

MKS1-related Disorders - Gene: MKS1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_017777:1-18. Detection Rate: Mixed or Other Caucasian >99%.

Mucolipidosis III Gamma - **Gene**: GNPTG. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_032520:1-11. **Detection Rate:** Mixed or Other Caucasian 98%.

Mucolipidosis IV - Gene: MCOLN1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_020533:1-14. Detection Rate: Mixed or Other Caucasian >99%.

Mucopolysaccharidosis Type I - Gene: IDUA. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000203:1-14. **Detection Rate:** Mixed or Other Caucasian >99%.

Mucopolysaccharidosis Type II - Gene: IDS. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000202:1-9. Detection Rate: Mixed or Other Caucasian 80%

Mucopolysaccharidosis Type IIIA - Gene: SGSH. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000199:1-8. **Detection Rate:** Mixed or Other Caucasian >99%.

Mucopolysaccharidosis Type IIIB - Gene: NAGLU. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000263:1-6. Detection Rate: Mixed or Other Caucasian >99%.

Mucopolysaccharidosis Type IIIC - Gene: HGSNAT. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_152419:1-18. Detection Rate: Mixed or Other Caucasian >99%.

Muscular Dystrophy, LAMA2-related - Gene: LAMA2. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000426:1-43,45-65. **Detection Rate:** Mixed or Other Caucasian 98%.

MYO7A-related Disorders - Gene: MYO7A. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000260:2-49. Detection Rate: Mixed or Other Caucasian >99%.

NEB-related Nemaline Myopathy - Gene: NEB. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_001271208:3-80,117-183. **Detection Rate:** Mixed or Other Caucasian 92%.

Nephrotic Syndrome, NPHS1-related - Gene: NPHS1. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_004646:1-29. **Detection Rate:** Mixed or Other Caucasian >99%.

MALE DONOR 10613

DOB:

Ethnicity: Mixed or Other

Caucasian

Barcode: 11004512971823

Nephrotic Syndrome, NPHS2-related - Gene: NPHS2. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_014625:1-8. **Detection Rate:** Mixed or Other Caucasian >99%.

Neuronal Ceroid Lipofuscinosis, CLN6-related - Gene: CLN6. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_017882:1-7. **Detection Rate:** Mixed or Other Caucasian >99%.

Niemann-Pick Disease Type C1 - Gene: NPC1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000271:1-25. Detection Rate: Mixed or Other Caucasian >99%.

Niemann-Pick Disease Type C2 - Gene: NPC2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_006432:1-5. Detection Rate: Mixed or Other Caucasian >99%.

Niemann-Pick Disease, SMPD1-related - Gene: SMPD1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000543:1-6. Detection Rate: Mixed or Other Caucasian >99%.

Nijmegen Breakage Syndrome - Gene: NBN. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_002485:1-16. Detection Rate: Mixed or Other Caucasian >99%.

Ornithine Transcarbamylase Deficiency - Gene: OTC. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000531:1-10. Detection Rate: Mixed or Other Caucasian 97%.

PCCA-related Propionic Acidemia - Gene: PCCA. Autosomal Recessive.
Sequencing with copy number analysis. Exons: NM_000282:1-24. Detection Rate: Mixed or Other Caucasian 95%.

PCCB-related Propionic Acidemia - Gene: PCCB. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000532:1-15. Detection Rate: Mixed or Other Caucasian >99%.

PCDH15-related Disorders - Gene: PCDH15. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_033056:2-33. Detection Rate: Mixed or Other Caucasian 93%.

Pendred Syndrome - **Gene:** SLC26A4. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000441:2-21. **Detection Rate:** Mixed or Other Caucasian >99%

Peroxisome Biogenesis Disorder Type 1 - Gene: PEX1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000466:1-24. Detection Rate: Mixed or Other Caucasian >99%.

Peroxisome Biogenesis Disorder Type 3 - Gene: PEX12. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000286:1-3. **Detection Rate:** Mixed or Other Caucasian >99%.

Peroxisome Biogenesis Disorder Type 4 - Gene: PEX6. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000287:1-17. **Detection Rate:** Mixed or Other Caucasian 97%.

Peroxisome Biogenesis Disorder Type 5 - Gene: PEX2. Autosomal Recessive. Sequencing with copy number analysis. Exon: NM_000318:4. Detection Rate: Mixed or Other Caucasian >99%.

Peroxisome Biogenesis Disorder Type 6 - Gene: PEX10. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_153818:1-6. **Detection Rate:** Mixed or Other Caucasian >99%.

Phenylalanine Hydroxylase Deficiency - Gene: PAH. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000277:1-13. Detection Rate: Mixed or Other Caucasian >99%.

POMGNT-related Disorders - Gene: POMGNT1. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_017739:2-22. **Detection Rate:** Mixed or Other Caucasian 96%.

Pompe Disease - Gene: GAA. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000152:2-20. Detection Rate: Mixed or Other Caucasian 98%. PPT1-related Neuronal Ceroid Lipofuscinosis - Gene: PPT1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000310:1-9. Detection Rate: Mixed or Other Caucasian >99%.

Primary Carnitine Deficiency - Gene: SLC22A5. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_003060:1-10. **Detection Rate:** Mixed or Other Caucasian >99%.

Primary Hyperoxaluria Type 1 - Gene: AGXT. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000030:1-11. **Detection Rate:** Mixed or Other Caucasian >99%.

Primary Hyperoxaluria Type 2 - Gene: GRHPR. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_012203:1-9. **Detection Rate:** Mixed or Other Caucasian >99%.

FEMALE

N/A

Primary Hyperoxaluria Type 3 - Gene: HOGA1. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_138413:1-7. **Detection Rate:** Mixed or Other Caucasian >99%.

Pycnodysostosis - Gene: CTSK. Autosomal Recessive. Sequencing with copy number analysis. **Exons**: NM_000396:2-8. **Detection Rate**: Mixed or Other Caucasian >99%.

Pyruvate Carboxylase Deficiency - Gene: PC. Autosomal Recessive. Sequencing with copy number analysis. **Exons**: NM_000920:3-22. **Detection Rate**: Mixed or Other Caucasian >99%.

Rhizomelic Chondrodysplasia Punctata Type 1 - Gene: PEX7. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000288:1-10. Detection Rate: Mixed or Other Caucasian >99%.

RTEL1-related Disorders - Gene: RTEL1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_032957:2-35. Detection Rate: Mixed or Other Caucasian >99%.

Sandhoff Disease - Gene: HEXB. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000521:1-14. Detection Rate: Mixed or Other Caucasian 98%.

Short-chain Acyl-CoA Dehydrogenase Deficiency - Gene: ACADS. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000017:1-10. Detection Rate: Mixed or Other Caucasian >99%.

Sjogren-Larsson Syndrome - Gene: ALDH3A2. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000382:1-10. **Detection Rate:** Mixed or Other Caucasian 96%.

SLC26A2-related Disorders - Gene: SLC26A2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000112:2-3. Detection Rate: Mixed or Other Caucasian >99%

Smith-Lemli-Opitz Syndrome - Gene: DHCR7. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001360:3-9. Detection Rate: Mixed or Other Caucasian >99%.

Spastic Paraplegia Type 15 - Gene: ZFYVE26. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_015346:2-42. **Detection Rate:** Mixed or Other Caucasian >99%.

Spinal Muscular Atrophy - Gene: SMN1. Autosomal Recessive. Spinal muscular atrophy. Variant (1): SMN1 copy number. Detection Rate: Mixed or Other Caucasian 95%.

Spondylothoracic Dysostosis - Gene: MESP2. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_001039958:1-2. Detection Rate: Mixed or Other Caucasian >99%.

TGM1-related Autosomal Recessive Congenital Ichthyosis - Gene: TGM1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000359 2-15. Detection Rate: Mixed or Other Caucasian >99%.

TPP1-related Neuronal Ceroid Lipofuscinosis - Gene: TPP1. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000391:1-13. Detection Rate: Mixed or Other Caucasian >99%.

Tyrosine Hydroxylase Deficiency - Gene: TH. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_199292:1-14. **Detection Rate:** Mixed or Other Caucasian >99%.

Tyrosinemia Type I - Gene: FAH. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000137:1-14. **Detection Rate:** Mixed or Other Caucasian >99%.

Tyrosinemia Type II - Gene: TAT. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_000353:2-12. **Detection Rate:** Mixed or Other Caucasian >99%.

USH1C-related Disorders - **Gene:** USH1C. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_005709:1-21. **Detection Rate:** Mixed or Other Caucasian >99%.

MALE
DONOR 10613
DOB:

Ethnicity: Mixed or Other

Caucasian

Barcode: 11004512971823

FEMALE N/A

USH2A-related Disorders - **Gene:** USH2A. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_206933:2-72. **Detection Rate:** Mixed or Other Caucasian 98%.

Usher Syndrome Type 3 - Gene: CLRN1. Autosomal Recessive. Sequencing with copy number analysis. **Exons:** NM_174878:1-3. **Detection Rate:** Mixed or Other Caucasian >99%.

Very-long-chain Acyl-CoA Dehydrogenase Deficiency - Gene: ACADVL. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000018:1-20. Detection Rate: Mixed or Other Caucasian >99%.

Wilson Disease - Gene: ATP7B. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_000053:1-21. Detection Rate: Mixed or Other Caucasian >99%.

X-linked Adrenal Hypoplasia Congenita - Gene: NR0B1. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000475:1-2. Detection Rate: Mixed or Other Caucasian 97%.

X-linked Adrenoleukodystrophy - Gene: ABCD1. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000033:1-6. Detection Rate: Mixed or Other Caucasian 77%.

X-linked Alport Syndrome - Gene: COL4A5. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000495:1-51. Detection Rate: Mixed or Other Caucasian 96%.

X-linked Juvenile Retinoschisis - Gene: RS1. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000330:1-6. Detection Rate: Mixed or Other Caucasian 98%.

X-linked Myotubular Myopathy - Gene: MTM1. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000252:2-15. Detection Rate: Mixed or Other Caucasian 96%.

X-linked Severe Combined Immunodeficiency - Gene: IL2RG. X-linked Recessive. Sequencing with copy number analysis. Exons: NM_000206:1-8. Detection Rate: Mixed or Other Caucasian >99%.

Xeroderma Pigmentosum Group A - **Gene**: XPA. Autosomal Recessive. Sequencing with copy number analysis. **Exons**: NM_000380:1-6. **Detection Rate**: Mixed or Other Caucasian >99%.

Xeroderma Pigmentosum Group C - Gene: XPC. Autosomal Recessive. Sequencing with copy number analysis. Exons: NM_004628:1-16. Detection Rate: Mixed or Other Caucasian 97%.

MALE
DONOR 10613
DOB:

Ethnicity: Mixed or Other

Caucasian

Barcode: 11004512971823

FEMALE N/A

Risk Calculations

Below are the risk calculations for all conditions tested. Negative results do not rule out the possibility of being a carrier. Residual risk is an estimate of each patient's post-test likelihood of being a carrier, while the reproductive risk represents an estimated likelihood that the patients' future children could inherit each disease. These risks are inherent to all carrier-screening tests, may vary by ethnicity, are predicated on a negative family history, and are present even given a negative test result. Inaccurate reporting of ethnicity may cause errors in risk calculation. In addition, average carrier rates are estimated using incidence or prevalence data from published scientific literature and/or reputable databases, where available, and are incorporated into residual risk calculations for each population/ethnicity. When population-specific data is not available for a condition, average worldwide incidence or prevalence is used. Further, incidence and prevalence data are only collected for the specified phenotypes (which include primarily the classic or severe forms of disease) and may not include alternate or milder disease manifestations associated with the gene. Actual incidence rates, prevalence rates, and carrier rates, and therefore actual residual risks, may be higher or lower than the estimates provided. Carrier rates, incidence/prevalence, and/or residual risks are not provided for some genes with biological or heritable properties that would make these estimates inaccurate. A '†' symbol indicates a positive result. See the full clinical report for interpretation and details. The reproductive risk presented is based on a hypothetical pairing with a partner of the same ethnic group.

Disease	DONOR 10613 Residual Risk	Reproductive Risk
6-pyruvoyl-tetrahydropterin Synthase Deficiency	< 1 in 50,000	< 1 in 1,000,000
Adenosine Deaminase Deficiency	1 in 22,000	< 1 in 1,000,000
Alpha Thalassemia, HBA1/HBA2-related	Alpha globin status: aa/aa.	Not calculated
Alpha-mannosidosis	1 in 35,000	< 1 in 1,000,000
Alpha-sarcoglycanopathy	< 1 in 50,000	< 1 in 1,000,000
Alstrom Syndrome	< 1 in 50,000	< 1 in 1,000,000
Andermann Syndrome	< 1 in 50,000	< 1 in 1,000,000
Argininemia	1 in 12,000	< 1 in 1,000,000
Argininosuccinic Aciduria	1 in 15,000	< 1 in 1,000,000
Aspartylglucosaminuria	< 1 in 50,000	< 1 in 1,000,000
Ataxia with Vitamin E Deficiency	< 1 in 50,000	< 1 in 1,000,000
Ataxia-telangiectasia .	1 in 4,200	< 1 in 1,000,000
ATP7A-related Disorders	< 1 in 1,000,000	1 in 250,000
Autoimmune Polyglandular Syndrome Type 1	1 in 15,000	< 1 in 1,000,000
Autosomal Recessive Osteopetrosis Type 1	1 in 8,900	< 1 in 1,000,000
Autosomal Recessive Polycystic Kidney Disease, PKHD1-related	1 in 8,100	< 1 in 1,000,000
Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay	< 1 in 44,000	< 1 in 1,000,000
Bardet-Biedl Syndrome, BBS1-related	1 in 32,000	< 1 in 1,000,000
Bardet-Biedl Syndrome, BBS10-related	1 in 42,000	< 1 in 1,000,000
Bardet-Biedl Syndrome, BBS12-related	< 1 in 50,000	< 1 in 1,000,000
Bardet-Biedl Syndrome, BBS2-related	< 1 in 50,000	< 1 in 1,000,000
BCS1L-related Disorders	< 1 in 50,000	< 1 in 1,000,000
Beta-sarcoglycanopathy	1 in 39,000	< 1 in 1,000,000
Biotinidase Deficiency	1 in 13,000	1 in 650,000
Bloom Syndrome	< 1 in 50,000	< 1 in 1,000,000
Calpainopathy	1 in 13,000	< 1 in 1,000,000
Canavan Disease	1 in 9,700	< 1 in 1,000,000
Carbamoylphosphate Synthetase I Deficiency	< 1 in 57,000	< 1 in 1,000,000
Carnitine Palmitoyltransferase IA Deficiency	< 1 in 50,000	< 1 in 1,000,000
Carnitine Palmitoyltransferase II Deficiency	1 in 25,000	< 1 in 1,000,000
Cartilage-hair Hypoplasia	< 1 in 50,000	< 1 in 1,000,000
Cerebrotendinous Xanthomatosis	1 in 11,000	< 1 in 1,000,000
Citrullinemia Type 1	1 in 14,000	< 1 in 1,000,000
CLN3-related Neuronal Ceroid Lipofuscinosis	1 in 8,600	< 1 in 1,000,000
CLN5-related Neuronal Ceroid Lipofuscinosis	< 1 in 50,000	< 1 in 1,000,000
CLN8-related Neuronal Ceroid Lipofuscinosis	< 1 in 50,000	< 1 in 1,000,000
Cohen Syndrome	< 1 in 15,000	< 1 in 1,000,000
COL4A3-related Alport Syndrome	1 in 3,400	< 1 in 1,000,000
COL4A4-related Alport Syndrome	1 in 35,000	< 1 in 1,000,000
Combined Pituitary Hormone Deficiency, PROP1-related	1 in 6,100	< 1 in 1,000,000
Congenital Adrenal Hyperplasia, CYP11B1-related	1 in 8,400	< 1 in 1,000,000
Congenital Adrenal Hyperplasia, CYP21A2-related	1 in 1,300	1 in 280,000
Congenital Disorder of Glycosylation Type Ia	1 in 16,000	< 1 in 1,000,000
Congenital Disorder of Glycosylation Type Ic	< 1 in 50,000	< 1 in 1,000,000
Congenital Disorder of Glycosylation, MPI-related	< 1 in 50,000	< 1 in 1,000,000

MALE
DONOR 10613
DOB:

Ethnicity: Mixed or Other

Caucasian

Barcode: 11004512971823

FEMALE N/A

	DONOR 10613	
Disease	Residual Risk	Reproductive Risk
Costeff Optic Atrophy Syndrome	< 1 in 50,000	< 1 in 1,000,000
Cystic Fibrosis	1 in 3,000	1 in 360,000
Cystinosis	1 in 22,000	< 1 in 1,000,000
D-bifunctional Protein Deficiency	1 in 9,000	< 1 in 1,000,000
Delta-sarcoglycanopathy	< 1 in 13,000	< 1 in 1,000,000
Dihydrolipoamide Dehydrogenase Deficiency	< 1 in 50,000	< 1 in 1,000,000
Dysferlinopathy	1 in 11,000	< 1 in 1,000,000
Dystrophinopathy (Including Duchenne/Becker Muscular Dystrophy)	Not calculated	Not calculated
ERCC6-related Disorders	1 in 8,500	< 1 in 1,000,000
ERCC8-related Disorders	< 1 in 16,000	< 1 in 1,000,000
EVC-related Ellis-van Creveld Syndrome	1 in 7,800	< 1 in 1,000,000
EVC2-related Ellis-van Creveld Syndrome Fabry Disease	1 in 9,800 < 1 in 1,000,000	< 1 in 1,000,000 1 in 220,000
Familial Dysautonomia	< 1 in 50,000	< 1 in 1,000,000
Familial Hyperinsulinism, ABCC8-related	1 in 17,000	< 1 in 1,000,000
Familial Hyperinsulinism, KCNJ11-related	< 1 in 50,000	< 1 in 1,000,000
Familial Mediterranean Fever	1 in 11,000	< 1 in 1,000,000
Fanconi Anemia Complementation Group A	1 in 2,800	< 1 in 1,000,000
Fanconi Anemia, FANCC-related	< 1 in 50,000	< 1 in 1,000,000
FKRP-related Disorders	1 in 16,000	< 1 in 1,000,000
FKTN-related Disorders	< 1 in 50,000	< 1 in 1,000,000
Free Sialic Acid Storage Disorders	< 1 in 30,000	< 1 in 1,000,000
Galactokinase Deficiency	1 in 37,000	< 1 in 1,000,000
Galactosemia	1 in 8,600	< 1 in 1,000,000
Gamma-sarcoglycanopathy	1 in 3,300	< 1 in 1,000,000
Gaucher Disease	1 in 260	1 in 110,000
GJB2-related DFNB1 Nonsyndromic Hearing Loss and Deafness	1 in 2,500	1 in 260,000
GLB1-related Disorders	1 in 17,000	< 1 in 1,000,000
Glutaric Acidemia, GCDH-related	1 in 16,000	< 1 in 1,000,000
Glycine Encephalopathy, AMT-related	1 in 26,000	< 1 in 1,000,000
Glycine Encephalopathy, GLDC-related	1 in 2,500	< 1 in 1,000,000
Glycogen Storage Disease Type Ia	1 in 8,700	< 1 in 1,000,000
Glycogen Storage Disease Type Ib	1 in 35,000	< 1 in 1,000,000
Glycogen Storage Disease Type III	1 in 16,000	< 1 in 1,000,000
GNE Myopathy	1 in 23,000	< 1 in 1,000,000
GNPTAB-related Disorders HADHA-related Disorders	1 in 20,000	< 1 in 1,000,000
Hb Beta Chain-related Hemoglobinopathy (Including Beta Thalassemia and Si	1 in 20,000	< 1 in 1,000,000
Disease)	1 in 3,700	1 in 560,000
Hereditary Fructose Intolerance	1 in 7,900	< 1 in 1,000,000
Hexosaminidase A Deficiency (Including Tay-Sachs Disease)	1 in 30,000	< 1 in 1,000,000
HMG-CoA Lyase Deficiency	< 1 in 50,000	< 1 in 1,000,000
Holocarboxylase Synthetase Deficiency	1 in 15,000	< 1 in 1,000,000
Homocystinuria, CBS-related	1 in 9,400	< 1 in 1,000,000
Hydrolethalus Syndrome	< 1 in 50,000	< 1 in 1,000,000
Hypophosphatasia	1 in 30,000	< 1 in 1,000,000
Isovaleric Acidemia	1 in 32,000	< 1 in 1,000,000
Joubert Syndrome 2	< 1 in 50,000	< 1 in 1,000,000
Junctional Epidermolysis Bullosa, LAMA3-related	< 1 in 50,000	< 1 in 1,000,000
Junctional Epidermolysis Bullosa, LAMB3-related	1 in 32,000	< 1 in 1,000,000
Junctional Epidermolysis Bullosa, LAMC2-related	< 1 in 50,000	< 1 in 1,000,000
Krabbe Disease	1 in 14,000	< 1 in 1,000,000
Leigh Syndrome, French-Canadian Type	< 1 in 50,000	< 1 in 1,000,000
Lipoid Congenital Adrenal Hyperplasia	< 1 in 50,000	< 1 in 1,000,000
Lysosomal Acid Lipase Deficiency	1 in 14,000	< 1 in 1,000,000
Maple Syrup Urine Disease Type Ia	1 in 39,000	< 1 in 1,000,000
Maple Syrup Urine Disease Type Ib	1 in 39,000	< 1 in 1,000,000
Maple Syrup Urine Disease Type II	1 in 16,000	< 1 in 1,000,000
Medium Chain Acyl-CoA Dehydrogenase Deficiency	1 in 4,400	1 in 790,000
Megalencephalic Leukoencephalopathy with Subcortical Cysts Metachromatic Leukodystrophy	< 1 in 50,000 1 in 16,000	< 1 in 1,000,000 < 1 in 1,000,000
Methylmalonic Acidemia, cblA Type	< 1 in 50,000	< 1 in 1,000,000 < 1 in 1,000,000
metry majorite Actuentia, cola Type	\ 1 III 30,000	< i iii 1,000,000

MALE
DONOR 10613
DOB:

Ethnicity: Mixed or Other

Caucasian

Barcode: 11004512971823

FEMALE N/A

Disease	DONOR 10613 Residual Risk	Reproductive Ris
Methylmalonic Acidemia, cblB Type	1 in 48,000	< 1 in 1,000,000
Nethylmalonic Acidemia, MMUT-related	1 in 26,000	< 1 in 1,000,000
Nethylmalonic Aciduria and Homocystinuria, cblC Type	1 in 16,000	< 1 in 1,000,000
/IKS1-related Disorders	< 1 in 50,000	< 1 in 1,000,000
lucolipidosis III Gamma	< 1 in 20,000	< 1 in 1,000,000
fucolipidosis IV	< 1 in 50,000	< 1 in 1,000,000
Nucopolysaccharidosis Type I	1 in 16,000	< 1 in 1,000,000
/lucopolysaccharidosis Type II	< 1 in 1,000,000	1 in 300,000
/lucopolysaccharidosis Type IIIA	1 in 19,000	< 1 in 1,000,000
Aucopolysaccharidosis Type IIIB	1 in 27,000	< 1 in 1,000,000
Nucopolysaccharidosis Type IIIC	< 1 in 50,000	< 1 in 1,000,000
fuscular Dystrophy, LAMA2-related	1 in 5,700	< 1 in 1,000,000
IYO7A-related Disorders	1 in 15,000	< 1 in 1,000,000
IEB-related Nemaline Myopathy	1 in 1,200	1 in 400,000
lephrotic Syndrome, NPHS1-related	< 1 in 50,000	< 1 in 1,000,000
ephrotic Syndrome, NPHS2-related	1 in 35,000	< 1 in 1,000,000
euronal Ceroid Lipofuscinosis, CLN6-related	1 in 20,000	< 1 in 1,000,000
iemann-Pick Disease Type C1	1 in 19,000	< 1 in 1,000,000
liemann-Pick Disease Type C2	< 1 in 50,000	< 1 in 1,000,000
liemann-Pick Disease, SMPD1-related	1 in 25,000	< 1 in 1,000,000
lijmegen Breakage Syndrome	1 in 16,000	< 1 in 1,000,000
Prnithine Transcarbamylase Deficiency	< 1 in 1,000,000	1 in 140,000
CCA-related Propionic Acidemia	1 in 4,200	< 1 in 1,000,000
CCB-related Propionic Acidemia	1 in 22,000	< 1 in 1,000,000
CDH15-related Disorders	1 in 3,300	< 1 in 1,000,000
endred Syndrome	1 in 8,200	< 1 in 1,000,000
eroxisome Biogenesis Disorder Type 1	1 in 16,000	< 1 in 1,000,000
• • • • • • • • • • • • • • • • • • • •		
eroxisome Biogenesis Disorder Type 3	1 in 44,000	< 1 in 1,000,000
eroxisome Biogenesis Disorder Type 4	1 in 9,300	< 1 in 1,000,000
eroxisome Biogenesis Disorder Type 5	< 1 in 71,000	< 1 in 1,000,000
eroxisome Biogenesis Disorder Type 6	< 1 in 50,000	< 1 in 1,000,000
henylalanine Hydroxylase Deficiency	1 in 4,800	1 in 940,000
OMGNT-related Disorders	< 1 in 12,000	< 1 in 1,000,000
ompe Disease	1 in 4,000	< 1 in 1,000,000
PT1-related Neuronal Ceroid Lipofuscinosis	1 in 7,700	< 1 in 1,000,000
rimary Carnitine Deficiency	1 in 11,000	< 1 in 1,000,000
rimary Hyperoxaluria Type 1	1 in 17,000	< 1 in 1,000,000
rimary Hyperoxaluria Type 2	< 1 in 50,000	< 1 in 1,000,000
rimary Hyperoxaluria Type 3	1 in 13,000	< 1 in 1,000,000
ycnodysostosis	1 in 43,000	< 1 in 1,000,000
yruvate Carboxylase Deficiency	1 in 25,000	< 1 in 1,000,000
hizomelic Chondrodysplasia Punctata Type 1	1 in 16,000	< 1 in 1,000,000
TEL1-related Disorders	< 1 in 50,000	< 1 in 1,000,000
andhoff Disease		
	1 in 18,000	< 1 in 1,000,000
hort-chain Acyl-CoA Dehydrogenase Deficiency	1 in 11,000	< 1 in 1,000,000
ogren-Larsson Syndrome	< 1 in 12,000	< 1 in 1,000,000
LC26A2-related Disorders	1 in 16,000	< 1 in 1,000,000
mith-Lemli-Opitz Syndrome	1 in 9,400	< 1 in 1,000,000
pastic Paraplegia Type 15	< 1 in 50,000	< 1 in 1,000,000
	Negative for g.27134T>G SNP	
oinal Muscular Atrophy	SMN1: 2 copies 1 in 770	1 in 110,000
oondylothoracic Dysostosis	< 1 in 50,000	< 1 in 1,000,000
GM1-related Autosomal Recessive Congenital Ichthyosis	1 in 22,000	< 1 in 1,000,000
PP1-related Neuronal Ceroid Lipofuscinosis	1 in 30,000	< 1 in 1,000,000
rosine Hydroxylase Deficiency	< 1 in 50,000	< 1 in 1,000,000
rosinemia Type I	1 in 16,000	< 1 in 1,000,000
rosinemia Type II	1 in 25,000	< 1 in 1,000,000
SH1C-related Disorders	1 in 30,000	< 1 in 1,000,000
ISH2A-related Disorders	1 in 4,100	< 1 in 1,000,000
Jsher Syndrome Type 3	1 in 41,000	< 1 in 1,000,000

MALE
DONOR 10613
DOB:

Ethnicity: Mixed or Other

Caucasian

Barcode: 11004512971823

FEMALE N/A

Disease	DONOR 10613 Residual Risk	Reproductive Risk < 1 in 1,000,000	
Wilson Disease	1 in 6,500		
X-linked Adrenal Hypoplasia Congenita	< 1 in 1,000,000	< 1 in 1,000,000	
X-linked Adrenoleukodystrophy	1 in 90,000	1 in 42,000	
X-linked Alport Syndrome	Not calculated	Not calculated	
X-linked Juvenile Retinoschisis	< 1 in 1,000,000	1 in 40,000	
X-linked Myotubular Myopathy	Not calculated	Not calculated	
X-linked Severe Combined Immunodeficiency	< 1 in 1,000,000	1 in 200,000	
Xeroderma Pigmentosum Group A	< 1 in 50,000	< 1 in 1,000,000	
Xeroderma Pigmentosum Group C	1 in 7,300	< 1 in 1,000,000	

DOB:

Male

Sex assigned at birth:

Gender:

Patient ID (MRN):

Sample type: Blood

Sample collection date: 19-OCT-2023

Sample accession date: 20-OCT-2023

Test performed

Report date: 28-OCT-2023 **Invitae #:** RQ5741595

Clinical team: Guadalupe Martinez

Dr. James Kuan

Reason for testing

Gamete donor Invitae Carrier Screen

RESULT: NEGATIVE

This carrier test evaluated 2 gene(s) for genetic changes (variants) that are associated with an increased risk of having a child with a genetic condition. Knowledge of carrier status for one of these conditions may provide information that can be used to assist with family planning and/or preparation. Carrier screening is not intended for diagnostic purposes. To identify a potential genetic basis for a condition in the individual being tested, diagnostic testing for the gene(s) of interest is recommended.

This test did not identify any genetic changes in the gene(s) analyzed that are currently recognized as clinically significant. This negative result reduces, but does not eliminate, the chance that this individual is a carrier for conditions caused by any of the genes tested. This individual may still be a carrier for a genetic condition that is not evaluated by this test.

Next steps

- Even for genes that have a negative test result, there is always a small risk that an individual could still be a carrier. This is called "residual risk." See the Carrier detection rates and residual risks document.
- Discussion with a physician and/or genetic counselor is recommended to further review the implications of this test result and to understand these results in the context of any family history of a genetic condition.
- All patients, regardless of result, may wish to consider additional screening for hemoglobinopathies by complete blood count (CBC) and hemoglobin electrophoresis, if this has not already been completed.
- Individuals can register their tests at https://www.invitae.com/patients/ to access online results, educational resources, and next steps.

Patient name: Donor 10613 D

Invitae #: RQ5741595

DOB:

Residual risk

No carrier test can detect 100% of carriers. There still remains a small risk of being a carrier after a negative test (residual risk). Residual risk values assume a negative family history and are inferred from published carrier frequencies and estimated detection rates based on testing technologies used at Invitae. You can view Invitae's complete Carrier detection rates and residual risks document (containing all carrier genes) online at https://www.invitae.com/carrier-residual-risks/. Additionally, the order-specific information for this report is available to download in the portal (under this order's documents) or can be requested by contacting Invitae Client Services. The complete Carrier detection rates and residual risks document will not be applicable for any genes with specimen-specific limitations in sequencing and/or deletion/duplication coverage. Please see the final bullet point in the Limitations section of this report to view if this specimen had any gene-specific coverage gaps.

Invitae #: RQ5741595

DOB:

Genes analyzed

This table represents a complete list of genes analyzed for this individual, including the relevant gene transcript(s). If more than one transcript is listed for a single gene, variants were reported using the first transcript listed unless otherwise indicated in the report. An asterisk (*) indicates that this gene has a limitation. Please see the Limitations section for details. Results are negative, unless otherwise indicated in the report.

GENE	TRANSCRIPT
POLG	NM_002693.2

GENE	TRANSCRIPT	
UNC13D	NM_199242.2	

Invitae #: RQ5741595

DOB:

B:

Methods

■ Genomic DNA obtained from the submitted sample is enriched for targeted regions using a hybridization-based protocol, and sequenced using Illumina technology. Unless otherwise indicated, all targeted regions are sequenced with ≥50x depth or are supplemented with additional analysis. Reads are aligned to a reference sequence (GRCh37), and sequence changes are identified and interpreted in the context of a single clinically relevant transcript, indicated in the Genes Analyzed table. Enrichment and analysis focus on the coding sequence of the indicated transcripts, 20bp of flanking intronic sequence, and other specific genomic regions demonstrated to be causative of disease at the time of assay design. Promoters, untranslated regions, and other non-coding regions are not otherwise interrogated. Exonic deletions and duplications are called using an in-house algorithm that determines copy number at each target by comparing the read depth for each target in the proband sequence with both mean read-depth and read-depth distribution, obtained from a set of clinical samples. Markers across the X and Y chromosomes are analyzed for quality control purposes and may detect deviations from the expected sex chromosome complement. Such deviations may be included in the report in accordance with internal guidelines. Variants are reported according to the Human Genome Variation Society (HGVS) guidelines. Confirmation of the presence and location of reportable variants is performed as needed based on stringent criteria using one of several validated orthogonal approaches (PubMed ID 30610921). Sequencing is performed by Invitae Corporation (1400 16th Street, San Francisco, CA 94103, #05D2040778). Confirmatory sequencing is performed by Invitae Corporation (1400 16th Street, San Francisco, CA 94103, #05D2040778).

The following additional analyses are performed if relevant to the requisition. For GBA the reference genome has been modified to mask the sites of polymorphic paralog sequence variants (PSVs) in both the gene and pseudogene. For CYP21A2 and GBA, if one or more reportable variants, gene conversion, or fusion event is identified via our NGS pipeline (see Limitations), these variants are confirmed by PacBio sequencing of an amplicon generated by long-range PCR and subsequent short-range PCR. In some cases, it may not be possible to disambiguate between the gene and pseudogene. For GJB2, the reportable range includes large upstream deletions overlapping GJB6. For HBA1/2, the reference genome has been modified to force some sequencing reads derived from HBA1 to align to HBA2, and variant calling algorithms are modified to support an expectation of 4 alleles in these regions. HBA1/2 copy number calling is performed by a custom hypothesis testing algorithm which generates diplotype calls. If sequence data for a sample does not support a unique high confidence match from among hypotheses tested, that sample is flagged for manual review. Copy number variation is only reported for coding sequence of HBA1 and HBA2 and the HS-40 region. This assay does not distinguish among the $-\alpha 3.7$ subtypes, and all $-\alpha 3.7$ variants are called as HBA1 deletions. This assay may not detect overlapping copy gain and copy loss events when the breakpoints of those events are similar. For FMR1, cytosine-guanine-guanine (CGG) triplet repeats in the 5' untranslated region (5' UTR) of the FMR1 gene are detected by triplet repeat-primed PCR (RP-PCR) with fluorescently labeled primers followed by capillary electrophoresis. Reference ranges: Normal: <45 CGG repeats, intermediate: 45-54 CGG repeats, premutation: 55-200 CGG repeats, full mutation: >200 CGG repeats. For alleles with 55-90 triplet repeats, the region surrounding the FMR1 repeat is amplified by PCR. The PCR amplicons are then processed through PacBio SMRTBell library prep and sequenced using PacBio long read technology. The number of AGG interruptions within the 55-90 triplet repeat is read directly from the resulting DNA sequences.

- This report only includes variants that have a clinically significant association with the conditions tested as of the report date. Variants of uncertain significance, benign variants, and likely benign variants are not included in this report. However, if additional evidence becomes available to indicate that the clinical significance of a variant has changed, Invitae may update this report and provide notification.
- A PMID is a unique identifier referring to a published, scientific paper. Search by PMID at http://www.ncbi.nlm.nih.gov/pubmed.
- An rsID is a unique identifier referring to a single genomic position, and is used to associate population frequency information with sequence changes at that position. Reported population frequencies are derived from a number of public sites that aggregate data from large-scale population sequencing projects, including ExAC (http://exac.broadinstitute.org), gnomAD (http://gnomad.broadinstitute.org), and dbSNP (http://ncbi.nlm.nih.gov/SNP).

Disclaimer

DNA studies do not constitute a definitive test for the selected condition(s) in all individuals. It should be realized that there are possible sources of error. Errors can result from trace contamination, rare technical errors, rare genetic variants that interfere with analysis, recent scientific developments, and alternative classification systems. This test should be one of many aspects used by the healthcare provider to help with a diagnosis and treatment plan, but it is not a diagnosis itself. This test was developed and its performance characteristics determined by Invitae. It has not been cleared or approved by

DOB:

Invitae #: RQ5741595

the FDA. The laboratory is regulated under the Clinical Laboratory Improvement Act (CLIA) as qualified to perform high-complexity clinical tests (CLIA ID: 05D2040778). This test is used for clinical purposes. It should not be regarded as investigational or for research.

Limitations

■ Based on validation study results, this assay achieves >99% analytical sensitivity and specificity for single nucleotide variants, insertions and deletions <15bp in length, and exon-level deletions and duplications. Invitae's methods also detect insertions and deletions larger than 15bp but smaller than a full exon but sensitivity for these may be marginally reduced. Invitae's deletion/duplication analysis determines copy number at a single exon resolution at virtually all targeted exons. However, in rare situations, single-exon copy number events may not be analyzed due to inherent sequence properties or isolated reduction in data quality. Certain types of variants, such as structural rearrangements (e.g. inversions, gene conversion events, translocations, etc.) or variants embedded in sequence with complex architecture (e.g. short tandem repeats or segmental duplications), may not be detected. Additionally, it may not be possible to fully resolve certain details about variants, such as mosaicism, phasing, or mapping ambiguity. Unless explicitly guaranteed, sequence changes in the promoter, non-coding exons, and other non-coding regions are not covered by this assay. Please consult the test definition on our website for details regarding regions or types of variants that are covered or excluded for this test. This report reflects the analysis of an extracted genomic DNA sample. While this test is intended to reflect the analysis of extracted genomic DNA from a referred patient, in very rare cases the analyzed DNA may not represent that individual's constitutional genome, such as in the case of a circulating hematolymphoid neoplasm, bone marrow transplant, blood transfusion, chimerism, culture artifact or maternal cell contamination. Interpretations are made on the assumption that any clinical information provided, including specimen identity, is accurate.

This report has been released utilizing a validated procedure approved by:

60 2hr

Qing Zhang, MD, PhD, FACMG, NYCQ, CGMB Clinical Molecular Geneticist

CARRIER DETECTION RATES AND RESIDUAL RISKS

This table is relevant to patient report RQ5741595 Issue date: 10/28/2023

This table displays residual risks after a negative result for each of the genes and corresponding disorders. The values provided assume a negative family history and the absence of symptoms for each disorder. For genes associated with both dominant and recessive inheritance, the numbers in this table apply to the recessive condition(s) associated with the gene, unless otherwise noted. Residual risk values are provided for disorders when carrier frequency is greater than 1 in 500. For disorders with carrier frequency equal to, or less than, 1 in 500, residual risk is considered to be reduced substantially. When provided, residual risk values are inferred from published carrier frequencies, and estimated detection rates are based on testing technologies used at Invitae. Residual risks are provided only as a guide for assessing approximate risk given a negative result; values may vary based on the ethnic background(s) of an individual. For any genes marked with an asterisk*, refer to the Limitations section of the patient report for detailed coverage information. In the case of a sample-specific limitation, "N/A" indicates that a residual risk value could not be calculated. AR = autosomal recessive, XL = X-linked, AD = autosomal dominant.

DISORDER (INHERITANCE)	GENE	ETHNICITY	CARRIER FREQUENCY	DETECTION RATE	RISK TO BE A CARRIER AFTER NEGATIVE RESULT
Familial hemophagocytic lymphohistiocytosis type 3 (AR) NM_199242.2	UNC13D	Pan-ethnic	1 in 177	93%	1 in 2515
POLG-related conditions (AR) NM_002693.2	POLG	Pan-ethnic	1 in 113	95%	1 in 2240

DOB:

Male

Sex assigned at birth:

Gender:

Patient ID (MRN):

Sample type: Blood

Sample collection date: 27-APR-2023

Sample accession date: 06-MAY-2023

Test performed

Report date: 13-MAY-2023

Invitae #: RQ4962467
Clinical team: Guadalupe Martinez

Jeffrey Olliffe

Reason for testing

Gamete donor Invitae Carrier Screen

RESULT: NEGATIVE

This carrier test evaluated 1 gene(s) for genetic changes (variants) that are associated with an increased risk of having a child with a genetic condition. Knowledge of carrier status for one of these conditions may provide information that can be used to assist with family planning and/or preparation. Carrier screening is not intended for diagnostic purposes. To identify a potential genetic basis for a condition in the individual being tested, diagnostic testing for the gene(s) of interest is recommended.

This test did not identify any genetic changes in the gene(s) analyzed that are currently recognized as clinically significant. This negative result reduces, but does not eliminate, the chance that this individual is a carrier for conditions caused by any of the genes tested. This individual may still be a carrier for a genetic condition that is not evaluated by this test.

Next steps

- Even for genes that have a negative test result, there is always a small risk that an individual could still be a carrier. This is called "residual risk." See the Carrier detection rates and residual risks document.
- Discussion with a physician and/or genetic counselor is recommended to further review the implications of this test result and to understand these results in the context of any family history of a genetic condition.
- All patients, regardless of result, may wish to consider additional screening for hemoglobinopathies by complete blood count (CBC) and hemoglobin electrophoresis, if this has not already been completed.
- Individuals can register their tests at https://www.invitae.com/patients/ to access online results, educational resources, and next steps.

DOB:

Invitae #: RQ4962467

Residual risk

No carrier test can detect 100% of carriers. There still remains a small risk of being a carrier after a negative test (residual risk). Residual risk values assume a negative family history and are inferred from published carrier frequencies and estimated detection rates based on testing technologies used at Invitae. You can view Invitae's complete Carrier detection rates and residual risks document (containing all carrier genes) online at https://www.invitae.com/carrier-residual-risks/. Additionally, the order-specific information for this report is available to download in the portal (under this order's documents) or can be requested by contacting Invitae Client Services. The complete Carrier detection rates and residual risks document will not be applicable for any genes with specimen-specific limitations in sequencing and/or deletion/duplication coverage. Please see the final bullet point in the Limitations section of this report to view if this specimen had any gene-specific coverage gaps.

Patient name: Donor 10613 DOB:

Invitae #: RQ4962467

Genes analyzed

This table represents a complete list of genes analyzed for this individual, including the relevant gene transcript(s). If more than one transcript is listed for a single gene, variants were reported using the first transcript listed unless otherwise indicated in the report. An asterisk (*) indicates that this gene has a limitation. Please see the Limitations section for details. Results are negative, unless otherwise indicated in the report.

GENE	TRANSCRIPT	
OCA2	NM_000275.2	

Invitae #: RQ4962467

DOB:

Methods

■ Genomic DNA obtained from the submitted sample is enriched for targeted regions using a hybridization-based protocol, and sequenced using Illumina technology. Unless otherwise indicated, all targeted regions are sequenced with ≥50x depth or are supplemented with additional analysis. Reads are aligned to a reference sequence (GRCh37), and sequence changes are identified and interpreted in the context of a single clinically relevant transcript, indicated in the Genes Analyzed table. Enrichment and analysis focus on the coding sequence of the indicated transcripts, 20bp of flanking intronic sequence, and other specific genomic regions demonstrated to be causative of disease at the time of assay design. Promoters, untranslated regions, and other non-coding regions are not otherwise interrogated. Exonic deletions and duplications are called using an in-house algorithm that determines copy number at each target by comparing the read depth for each target in the proband sequence with both mean read-depth and read-depth distribution, obtained from a set of clinical samples. Markers across the X and Y chromosomes are analyzed for quality control purposes and may detect deviations from the expected sex chromosome complement. Such deviations may be included in the report in accordance with internal guidelines. Invitae utilizes a classification methodology to identify next-generation sequencing (NGS)-detected variants that require orthogonal confirmation (Lincoln, et al. J Mol Diagn. 2019 Mar;21(2):318-329). Confirmation of the presence and location of reportable variants is performed as needed based on stringent criteria using one of several validated orthogonal approaches (PubMed ID 30610921). Sequencing is performed by Invitae Corporation (1400 16th Street, San Francisco, CA 94103, #05D2040778).

The following additional analyses are performed if relevant to the requisition. For GBA the reference genome has been modified to mask the sites of polymorphic paralog sequence variants (PSVs) in both the gene and pseudogene. For CYP21A2 and GBA, if one or more reportable variants, gene conversion, or fusion event is identified via our NGS pipeline (see Limitations), these variants are confirmed by PacBio sequencing of an amplicon generated by long-range PCR and subsequent short-range PCR. In some cases, it may not be possible to disambiguate between the gene and pseudogene. For GJB2, the reportable range includes large upstream deletions overlapping GJB6. For HBA1/2, the reference genome has been modified to force some sequencing reads derived from HBA1 to align to HBA2, and variant calling algorithms are modified to support an expectation of 4 alleles in these regions. HBA1/2 copy number calling is performed by a custom hypothesis testing algorithm which generates diplotype calls. If sequence data for a sample does not support a unique high confidence match from among hypotheses tested, that sample is flagged for manual review. Copy number variation is only reported for coding sequence of HBA1 and HBA2 and the HS-40 region. This assay does not distinguish among the $-\alpha 3.7$ subtypes, and all $-\alpha 3.7$ variants are called as HBA1 deletions. This assay may not detect overlapping copy gain and copy loss events when the breakpoints of those events are similar. For FMR1, cytosine-guanine-guanine (CGG) triplet repeats in the 5' untranslated region (5' UTR) of the FMR1 gene are detected by triplet repeat-primed PCR (RP-PCR) with fluorescently labeled primers followed by capillary electrophoresis. Reference ranges: Normal: <45 CGG repeats, intermediate: 45-54 CGG repeats, premutation: 55-200 CGG repeats, full mutation: >200 CGG repeats. For alleles with 55-90 triplet repeats, the region surrounding the FMR1 repeat is amplified by PCR. The PCR amplicons are then processed through PacBio SMRTBell library prep and sequenced using PacBio long read technology. The number of AGG interruptions within the 55-90 triplet repeat is read directly from the resulting DNA sequences.

- This report only includes variants that have a clinically significant association with the conditions tested as of the report date. Variants of uncertain significance, benign variants, and likely benign variants are not included in this report. However, if additional evidence becomes available to indicate that the clinical significance of a variant has changed, Invitae may update this report and provide notification.
- A PMID is a unique identifier referring to a published, scientific paper. Search by PMID at http://www.ncbi.nlm.nih.gov/pubmed.
- An rsID is a unique identifier referring to a single genomic position, and is used to associate population frequency information with sequence changes at that position. Reported population frequencies are derived from a number of public sites that aggregate data from large-scale population sequencing projects, including ExAC (http://exac.broadinstitute.org), gnomAD (http://gnomad.broadinstitute.org), and dbSNP (http://ncbi.nlm.nih.gov/SNP).

Disclaimer

DNA studies do not constitute a definitive test for the selected condition(s) in all individuals. It should be realized that there are possible sources of error. Errors can result from trace contamination, rare technical errors, rare genetic variants that interfere with analysis, recent scientific developments, and alternative classification systems. This test should be one of many aspects used by the healthcare provider to help with a diagnosis and treatment plan, but it is not a diagnosis itself. This test was developed and its performance characteristics determined by Invitae. It has not been cleared or approved by

OB:

Invitae #: RQ4962467

the FDA. The laboratory is regulated under the Clinical Laboratory Improvement Act (CLIA) as qualified to perform high-complexity clinical tests (CLIA ID: 05D2040778). This test is used for clinical purposes. It should not be regarded as investigational or for research.

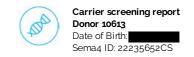
Limitations

■ Based on validation study results, this assay achieves >99% analytical sensitivity and specificity for single nucleotide variants, insertions and deletions <15bp in length, and exon-level deletions and duplications. Invitae's methods also detect insertions and deletions larger than 15bp but smaller than a full exon but sensitivity for these may be marginally reduced. Invitae's deletion/duplication analysis determines copy number at a single exon resolution at virtually all targeted exons. However, in rare situations, single-exon copy number events may not be analyzed due to inherent sequence properties or isolated reduction in data quality. Certain types of variants, such as structural rearrangements (e.g. inversions, gene conversion events, translocations, etc.) or variants embedded in sequence with complex architecture (e.g. short tandem repeats or segmental duplications), may not be detected. Additionally, it may not be possible to fully resolve certain details about variants, such as mosaicism, phasing, or mapping ambiguity. Unless explicitly guaranteed, sequence changes in the promoter, non-coding exons, and other non-coding regions are not covered by this assay. Please consult the test definition on our website for details regarding regions or types of variants that are covered or excluded for this test. This report reflects the analysis of an extracted genomic DNA sample. While this test is intended to reflect the analysis of extracted genomic DNA from a referred patient, in very rare cases the analyzed DNA may not represent that individual's constitutional genome, such as in the case of a circulating hematolymphoid neoplasm, bone marrow transplant, blood transfusion, chimerism, culture artifact or maternal cell contamination.

This report has been released utilizing a validated procedure approved by:

06 2hs

Qing Zhang, MD, PhD, FACMG, NYCQ, CGMB Clinical Molecular Geneticist


CARRIER DETECTION RATES AND RESIDUAL RISKS

This table is relevant to patient report RQ4962467 Issue date: 05/13/2023

This table displays residual risks after a negative result for each of the genes and corresponding disorders. The values provided assume a negative family history and the absence of symptoms for each disorder. For genes associated with both dominant and recessive inheritance, the numbers in this table apply to the recessive condition(s) associated with the gene, unless otherwise noted. Residual risk values are provided for disorders when carrier frequency is greater than 1 in 500. For disorders with carrier frequency equal to, or less than, 1 in 500, residual risk is considered to be reduced substantially. When provided, residual risk values are inferred from published carrier frequencies, and estimated detection rates are based on testing technologies used at Invitae. Residual risks are provided only as a guide for assessing approximate risk given a negative result; values may vary based on the ethnic background(s) of an individual. For any genes marked with an asterisk*, refer to the Limitations section of the patient report for detailed coverage information. In the case of a sample-specific limitation, "N/A" indicates that a residual risk value could not be calculated. AR = autosomal recessive, XL = X-linked, AD = autosomal dominant.

DISORDER (INHERITANCE)	GENE	ETHNICITY	CARRIER FREQUENCY	DETECTION RATE	RISK TO BE A CARRIER AFTER NEGATIVE RESULT
Oculocutaneous albinism type 2 (AR) NM_000275.2	OCA2	Pan-ethnic	1 in 95	99%	1 in 9400

Patient Information

Name: Donor 10613

Date of Birth:
Sema4 ID: 22235652CS

Client ID: SEATSB-S448283241 Indication: Carrier Screening

Specimen Information

Specimen Type: Blood
Date Collected: 11/18/2022
Date Received: 11/19/2022
Final Report: 12/08/2022

Referring Provider

Jeffrey Olliffe, M.D. Seattle Sperm Bank 4915 25th Avenue NE Suite 204W Seattle, WA, 98105 Fax: 206-466-4696

Custom Carrier Screen (1 gene)

with Personalized Residual Risk

SUMMARY OF RESULTS AND RECOMMENDATIONS

O Negative

Negative for all genes tested: *ARSB*To view a full list of genes and diseases tested please see Table 1 in this report

AR=Autosomal recessive: XL=X-linked

Recommendations

- Consideration of residual risk by ethnicity after a negative carrier screen is recommended for the other diseases on the panel, especially in the case of a positive family history for a specific disorder. Please note that residual risks for X-linked diseases (including full repeat expansions for Fragile X syndrome) may not be accurate for males and the actual residual risk is likely to be lower.
- As genetic technologies may improve and variant classifications may change over time, it is recommended to obtain a new carrier screening test or reanalysis when a new pregnancy is being considered.

Test description

This patient was tested for the genes listed above using one or more of the following methodologies: target capture and short-read sequencing, long-range PCR followed by short-read sequencing, targeted genotyping, and/or copy number analysis. Please note that negative results reduce but do not eliminate the possibility that this individual is a carrier for one or more of the disorders tested. Please see Table 1 for a list of genes and diseases tested with the patient's personalized residual risk. If personalized residual risk is not provided, please see the complete residual risk table at **go.sema4.com/residualrisk**. Only known pathogenic or likely pathogenic variants are reported. This carrier screening test does not report likely benign variants and variants of uncertain significance (VUS). If reporting of likely benign variants and VUS are desired in this patient, please contact the laboratory at 800-298-6470, option 2 to request an amended report.

Anastasia Larmore, Ph.D., Associate Laboratory Director

Genes and diseases tested

The personalized residual risks listed below are specific to this individual. The complete residual risk table is available at go.sema4.com/residualrisk

Table 1: List of genes and diseases tested with detailed results

	Disease	Gene	Inheritance Pattern	Status	Detailed Summary
Θ	Negative				
	Mucopolysaccharidosis type VI	ARSB	AR	Reduced Risk	Personalized Residual Risk: 1 in 1,300

AR=Autosomal recessive: XL=X-linked

Test methods and comments

Genomic DNA isolated from this patient was analyzed by one or more of the following methodologies, as applicable:

Fragile X CGG Repeat Analysis (Analytical Detection Rate >99%)

PCR amplification using Asuragen, Inc. AmplideX[®] FMR1 PCR reagents followed by capillary electrophoresis for allele sizing was performed. Samples positive for FMR1 premutations and full mutations greater than 90 CGG repeats in length were further analyzed by Southern blot analysis or methylation PCR to assess the size and methylation status of the FMR1 CGG repeat. Additional testing to determine the status of AGG interruptions within the FMR1 CGG repeat will be automatically performed for premutation alleles ranging from 55 to 90 repeats. These results, which may modify risk for expansion, will follow in a separate report.

Genotyping (Analytical Detection Rate >99%)

Multiplex PCR amplification and single-base pair probe extension analyses using the Agena Bioscience iPlex Pro chemistry on a MassARRAY[®] System were used to identify certain recurrent variants that are complex in nature or are present in low copy repeats. Rare sequence variants may interfere with assay performance.

Multiplex Ligation-Dependent Probe Amplification (MLPA) (Analytical Detection Rate >99%)

Conventional MLPA and/or digitalMLPA[®] probe sets and reagents from MRC-Holland were used for copy number variations (CNVs) analysis of specific targets versus known control samples. digitalMLPA[®] is a semi-quantitative technique, based on the well-established conventional MLPA method, followed by Illumina based sequencing to determine read number for amplicon quantification. False positive or negative results may occur due to rare sequence variants in target regions detected by conventional MLPA or digitalMLPA[®] probes. Analytical sensitivity and specificity of both the conventional MLPA method and the digitalMLPA[®] method are greater than 99%.

For alpha thalassemia, the copy numbers of the *HBA1* and *HBA2* genes were analyzed. Alpha-globin gene deletions, duplications, and the Constant Spring (CS) mutation are assessed. This test is expected to detect approximately 90% of all alpha-thalassemia mutations, varying by ethnicity. Carriers of alpha-thalassemia with three or more *HBA* copies on one chromosome, and one or no copies on the other chromosome, may not be precisely specified without phase analysis. With the exception of duplications, other benign alpha-globin gene polymorphisms will not be reported. Analyses of *HBA1* and *HBA2* are performed in association with long-range PCR of the coding regions followed by short-read sequencing.

For Duchenne muscular dystrophy, the copy numbers of all *DMD* exons were analyzed. Potentially pathogenic single exon deletions and duplications are confirmed by a second method. Analysis of *DMD* is performed in association with sequencing of the coding regions.

For congenital adrenal hyperplasia, the copy number of the *CYP21A2* gene was analyzed. This analysis can detect large deletions typically due to unequal meiotic crossing-over between *CYP21A2* and the pseudogene *CYP21A1P*. Classic 30-kb deletions make up approximately 20% of *CYP21A2* pathogenic alleles. This test may also identify certain point mutations in *CYP21A2* caused by gene conversion events between *CYP21A2* and *CYP21A1P*. Some carriers may not be identified by dosage sensitive methods as this testing cannot detect individuals with two copies (duplication) of the *CYP21A2* gene on one chromosome and loss of *CYP21A2* (deletion) on the other chromosome. Analysis of *CYP21A2* is performed in association with long-range PCR of the coding regions followed by short-read sequencing.

For spinal muscular atrophy (SMA), the copy numbers of the *SMN1* and *SMN2* genes were analyzed. The individual dosage of exons 7 and 8 as well as the combined dosage of exons 1, 4, 6 and 8 of *SMN1* and *SMN2* were assessed. Copy number gains and losses can be detected. Depending on ethnicity, 6 - 29 % of carriers will not be identified by dosage sensitive methods as this testing cannot distinguish individuals with two copies (duplication) of the *SMN1* gene on one chromosome and loss of *SMN1* (deletion) on the other chromosome (silent 2+0 carrier) or identify intragenic mutation in *SMN1*. Please also note that 2% of individuals diagnosed with SMA have a causative *SMN1* variant that occurred de novo, therefore cannot be picked up by carrier screening in the parents. Analysis of *SMN1* is performed in association with short-read sequencing of exons 2a-7, followed by confirmation using long-range PCR (described below).

In individuals with two copies of *SMN1* with Ashkenazi Jewish, East Asian, African American, Native American or Caucasian ancestry, the presence or absence of c.*3+80T>G significantly increases or decreases, respectively, the likelihood of being a silent 2+0 silent carrier. MLPA for Gaucher disease (*GBA*), cystic fibrosis (*CFTR*), and non-syndromic hearing loss (*GJB2/GJB6*) will only be performed if indicated for confirmation of detected CNVs. If *GBA* analysis was performed, the copy numbers of exons 1, 3, 4, and 6 - 10 of the GBA gene (of 11 exons total) were analyzed. If *CFTR* analysis was performed, the copy numbers of all 27 *CFTR* exons were analyzed. If *GJB2/GJB6* analysis was performed, the copy number of the two *GJB2* exons were analyzed, as well as the presence or absence of the two upstream deletions of the *GJB2* regulatory region, del(*GJB6*-D13S1830) and del(*GJB6*-D13S1854).

Next Generation Sequencing (NGS) (Analytical Detection Rate >95%)

NGS was performed on a panel of genes for the purpose of identifying pathogenic or likely pathogenic variants.

Agilent SureSelectTMXT Low Input technology was used with a custom capture library to target the exonic regions and intron/exon splice junctions of the relevant genes, as well as a number of UTR, intronic or promoter regions that contain previously reported mutations. Libraries were pooled and sequenced on the Illumina NovaSeq 6000 platform, using paired-end 100 bp reads. The sequencing data was analyzed using a custom bioinformatics algorithm designed and validated in house.

The coding exons and splice junctions of the known protein-coding RefSeq genes were assessed for the average depth of coverage (minimum of 20X) and data quality threshold values. Most exons not meeting a minimum of >20X read depth across the exon are further analyzed by Sanger sequencing. Please note that several genomic regions present difficulties in mapping or obtaining read depth >20X. These regions, which are described below, will not be reflexed to Sanger sequencing if the mapping quality or coverage is poor. Any variants identified during testing in these regions are confirmed by a second method and reported if determined to be pathogenic or likely pathogenic. However, as there is a possibility of false negative results within these regions, detection rates and residual risks for these genes have been calculated with the presumption that variants in these exons will not be detected, unless included in the MassARRAY[®] genotyping platform.

Exceptions: ABCD1 (NM_000033.3) exons 8 and 9; ACADSB (NM_001609.3) chr10:124.810.695-124.810,707 (partial exon 9); ADA (NM_0000222) exon 1; ADAMTS2 (NM_014244 4) exon 1; AGPS (NM_003659.3) chrz:178,257,512-178,257,649 (partial exon 1); ALDH7A1 (NM_001182.4) chr5:125.011.150-125.011.163 (partial exon 7) and chr5:125.896.807-125.896.821 (partial exon 10): ALMS1 (NM_015120.4) chr2:73.612.990-73.613.041 (partial exon 1); APOPTI (NM_ 032374.4) chr14:104.040,437-104.040,455 (partial exon 3); CDAN1 (NM_138477.2) exon 2; CEP152 (NM_014985.3) chr15;49,061,146-49,061,165 (partial exon 14) and exon 22; CEP2go (NM_025114.3) exon 5, exon 7, chr12:88,519,017-88,519,039 (partial exon 13), chr12:88,514,049-88,514,058 (partial exon 15), chr12:88,502,837-88,502,841 (partial exon 23), chr12:88,481,551-88,481,589 (partial exon 32), chr12:88,471,605-88,471,700 (partial exon 40); CFTR (NM_000492.3) exon 10; COL4A4 (NM_0000924) chr2:227,942,604-227,942,619 (partial exon 25); COX10 (NM_001303.3) exon 6; CYP11B1 (NM_000497.3) exons 3-7; CYP11B2 (NM_000498.3) exons 3-7; DNAI2 (NM_023036.4) chr17:72,308.136-72.308.147 (partial exon 12); DOK7 (NM 173660.4) chr4:3.465.131-3.465.161 (partial exon 1) and exon 2; DUOX2 (NM 014080.4) exons 6-8; EIF2AK3 (NM_004836.5 exon 8; EVC (NM_1537172) exon 1; F5(NM_0001304) chr1:169,551,662-169,551,679 (partial exon 2); FH (NM_000143.3) exon 1; GAMT (NM_000156.5 exon 1; GLDC(NM_000170 2) exon 1; GNPTAB (NM_024312 4) chr17:4,837,000-4,837,400 (partial exon 2); GNPTG (NM_032520 4) exon 1; GHR (NM_0001634) exon 3; GYS2 (NM_0219573) chr12:21,699,370-21,699,409 (partial exon 12); HGSNAT (NM_152419,2) exon 1; IDS (NM_000202.6 exon 3; ITGB4 (NM_000213.4) chr17:73,749,976-73,750,060 (partial exon 33); JAK3 (NM_000215.3) chr19:17,950,462-17,950,483 (partial exon 10); LIFR (NM_002310.5 exon 19; LMBRD1 (NM_018368.3) chr6:70,459,226-70,459,257 (partial exon 5), chr6:70,447,828-70,447,836 (partial exon 7) and exon 12; LYST (NM_000081.3) chr1:235,944,158-235,944,176 (partial exon 16) and chr1 235,875,350-235,875,362 (partial exon 43); MLYCD (NM_012213.2) chr16:83,933,242-83,933,282 (partial exon 1); MTR (NM_000254.2) chr1 237,024,418-237,024,439 (partial exon 20) and chr1:237,038,019-237,038,029 (partial exon 24); NBEAL2 (NM_015175 2) chr3 47,021,385-47,021,407 (partial exon 1); NEB (NM_001271208.1 exons 82-105; NPC1 (NM_0002714) chr18:21,123,519-21,123,538 (partial exon 14); NPHP1 (NM_000272.3)chr2:110,937,251-110,937,263 (partial exon 3); OCRL (NM_000276.3) chrX:128,674,450-128,674,460 (partial exon 1); PHKB (NM_000293 2) exon 1 and chr16:47,732,498-47,732,504 (partial exon 30); PIGN (NM_176787.4) chr18:59,815.547-59,815.576 (partial exon 8): PIP5K1C (NM_012398.2) exon 1 and chr19:3637602-3637616 (partial exon 17): POU1F1 (NM_000306.3) exon 5; PTPRC (NM_0028384) exons 11 and 23; PUS1 (NM_025215.5 chr12:132,414,446-132,414,532 (partial exon 2); RPGR/P1L (NM_0152722) exon 23; SGSH (NM_000199,3) chr17;78,194,022-78,194,072 (partial exon 1); SLC6A8 (NM_005629,3) exons 3 and 4; ST3GAL5 (NM_003896.3) exon 1; SURF1 (NM_003172.3) chrg:136,223,26g-136,223,307 (partial exon 1); TRPM6 (NM_017662.4) chrg:77,362,800-77,362,811 (partial exon 31); TSEN54

(NM_207346.2) exon 1; *TYR* (NM_0003724) exon 5; *VWF* (NM_000552.3) exons 24-26, chr12:6,125,675-6,125,684 (partial exon 30), chr12:6,121,244-6,121,265 (partial exon 33), and exon 34.

This test will detect variants within the exons and the intron-exon boundaries of the target regions. Variants outside these regions may not be detected, including, but not limited to, UTRs, promoters, and deep intronic areas, or regions that fall into the Exceptions mentioned above. This technology may not detect all small insertion/deletions and is not diagnostic for repeat expansions and structural genomic variation. In addition, a mutation(s) in a gene not included on the panel could be present in this patient.

Variant interpretation and classification was performed based on the American College of Medical Genetics Standards and Guidelines for the Interpretation of Sequence Variants (Richards et al. 2015). All potentially pathogenic variants may be confirmed by either a specific genotyping assay or Sanger sequencing, if indicated. Any benign variants, likely benign variants or variants of uncertain significance identified during this analysis will not be reported.

Next Generation Sequencing for SMN1

Exonic regions and intron/exon splice junctions of *SMN1* and *SMN2* were captured, sequenced, and analyzed as described above. Any variants located within exons 2a-7 and classified as pathogenic or likely pathogenic were confirmed to be in either *SMN1* or *SMN2* using gene-specific long-range PCR analysis followed by Sanger sequencing. Variants located in exon 1 cannot be accurately assigned to either *SMN1* or *SMN2* using our current methodology, and so these variants are not reported.

Copy Number Variant (CNV) Analysis (Analytical Detection Rate >98% for CNVs of 3 exons and larger, >90% for CNVs of 2 exons)

Large duplications and deletions were called from the relative read depths on an exon-by-exon basis using a custom exome hidden Markov model (XHMM) algorithm. Deletions or duplications determined to be pathogenic or likely pathogenic were confirmed by either a custom arrayCGH platform, quantitative PCR, or MLPA (depending on CNV size and gene content). While this algorithm is designed to pick up deletions and duplications of 2 or more exons in length, potentially pathogenic single-exon CNVs will be confirmed and reported, if detected. Deletions and duplications near the lower limit of detection may not be detected due to run variability. Genomic regions with high homology or highly repetitive sequences are excluded from this analysis.

Exon Array Comparative Genomic Hybridization (aCGH) (Confirmation method) (Accuracy >99%)

The customized oligonucleotide microarray (Oxford Gene Technology) is a highly-targeted exon-focused array capable of detecting medically relevant microdeletions and microduplications at a much higher resolution than traditional aCGH methods. Each array matrix has approximately 1,000,000 60-mer oligonucleotide probes that cover the entire genome. This platform is designed based on human genome NCBI Build 37 (hg1g) and the CGH probes are enriched to target the exonic regions of the genes in this panel.

Quantitative PCR (Confirmation method) (Accuracy >99%)

The relative quantification PCR is utilized on a Roche SYBR Green reagents on a LightCycler $^{\circledR}$ 480 System, which relates the PCR signal of the target region in one group to another. To test for genomic imbalances, both sample DNA and reference DNA is amplified with primer/probe sets that specific to the target region and a control region with known genomic copy number. Relative genomic copy numbers are calculated based on the standard \triangle Ct formula.

Long-Range PCR (Analytical Detection Rate >99%)

Long-range PCR was performed to generate locus-specific amplicons for CYP21A2, HBA1 and HBA2 and GBA. The PCR products were then prepared for short-read NGS sequencing and sequenced. Sequenced reads were mapped back to the original genomic locus and run through the bioinformatics pipeline. If indicated, copy number from MLPA was correlated with the sequencing output to analyze the results. Please note that in rare cases, allele drop-out may occur, which has the potential to lead to false negative results. For CYP21A2, a certain percentage of healthy individuals carry a duplication of the CYP21A2 gene, which has no clinical consequences. In cases where multiple copies of CYP21A2 are located on the same chromosome in tandem, only the last copy will be amplified and assessed for potentially pathogenic variants, due to size limitations of the PCR reaction. However, because these alleles contain at least two copies of the CYP21A2 gene in tandem, it is expected that this patient has at least one functional gene in the tandem allele and this patient is therefore less likely to be a carrier. A CYP21A1P/CYP21A2 hybrid gene detected only by MLPA but not by long-range PCR will not be reported when the long-range PCR indicates the presence of two full CYP21A2 gene copies (one on each chromosome), as the additional hybrid gene is nonfunctional. Classic 30-kb deletions are identified by MLPA and are also identified by the presence of multiple common pathogenic CYP21A2 variants by long-range PCR. Since multiple pseudogene-derived variants are detected in all cases with the classic 30kb deletion, we cannot rule out the possibility that some variant(s) detected could be present in trans with the chimeric CYP21A1P/CYP21A2 gene created by the 30kb deletion. When an individual carries both a duplication allele and a pathogenic variant, or multiple pathogenic variants, the current analysis may not be able to determine the phase (cis/trans configuration) of the CYP21A2 alleles identified. Family studies may be required in certain scenarios where phasing is required to determine the carrier status.

Residual Risk Calculations

Carrier frequencies and detection rates for each ethnicity were calculated through the combination of internal curations of >30,000 variants and genomic frequency data from >138,000 individuals across seven ethnic groups in the gnomAD database. Additional variants in HGMD and novel deleterious variants were also incorporated into the calculation. Residual risk values are calculated using a Bayesian analysis combining the a *priori* risk of being a pathogenic mutation carrier (carrier frequency) and the detection rate. They are provided only as a guide for assessing approximate risk given a negative result, and values will vary based on the exact ethnic background of an individual. This report does not represent medical advice but should be interpreted by a genetic counselor, medical geneticist or physician skilled in genetic result interpretation and the relevant medical literature.

Personalized Residual Risk Calculations

Agilent SureSelectTMXT Low-Input technology was utilized in order to create whole-genome libraries for each patient sample. Libraries were then pooled and sequenced on the Illumina NovaSeq platform. Each sequencing lane was multiplexed to achieve 0.4-2x genome coverage, using paired-end 100 bp reads. The sequencing data underwent ancestral analysis using a customized, licensed bioinformatics algorithm that was validated in house. Identified sub-ethnic groupings were binned into one of 7 continental-level groups (African, East Asian, South Asian, Non-Finnish European, Finnish, Native American, and Ashkenazi Jewish) or, for those ethnicities that matched poorly to the continental-level groups, an 8th "unassigned" group, which were then used to select residual risk values for each gene. For individuals belonging to multiple high-level ethnic groupings, a weighting strategy was used to select the most appropriate residual risk. For genes that had insufficient data to calculate ethnic-specific residual risk values, or for sub-ethnic groupings that fell into the "unassigned" group, a "worldwide" residual risk was used. This "worldwide" residual risk was calculated using data from all available continental-level groups.

Several genes have multiple residual risks associated to reflect the likelihood of the tested individual being a carrier for different diseases that are attributed to non-overlapping pathogenic variants in that gene. When calculating the couples' combined reproductive risk, the highest residual risk for each patient was selected.

Sanger Sequencing (Confirmation method) (Accuracy >99%)

Sanger sequencing, as indicated, was performed using BigDye Terminator chemistry with the ABI 3730 DNA analyzer with target specific amplicons. It also may be used to supplement specific guaranteed target regions that fail NGS sequencing due to poor quality or low depth of coverage (<20 reads) or as a confirmatory method for NGS positive results. False negative results may occur if rare variants interfere with amplification or annealing.

Tay-Sachs Disease (TSD) Enzyme Analysis (Analytical Detection Rate >98%)

Hexosaminidase activity and Hex A% activity were measured by a standard heat-inactivation, fluorometric method using artificial 4-MU-β-N-acetyl glucosaminide (4-MUG) substrate. This assay is highly sensitive and accurate in detecting Tay-Sachs carriers and individuals affected with TSD. Normal ranges of Hex A% activity are 55.0-72.0 for white blood cells and 58.0-72.0 for plasma. It is estimated that less than 0.5% of Tay-Sachs carriers have non-carrier levels of percent Hex A activity, and therefore may not be identified by this assay. In addition, this assay may detect individuals that are carriers of or are affected with Sandhoff disease. False positive results may occur if benign variants, such as pseudodeficiency alleles, interfere with the enzymatic assay. False negative results may occur if both HEXA and HEXB pathogenic or pseudodeficiency variants are present in the same individual.

Please note that it is not possible to perform Tay-Sachs disease enzyme analysis on saliva samples, buccal swabs, tissue samples, semen samples, or on samples received as extracted DNA.

This test was developed, and its performance characteristics determined by Sema4 Opco, Inc. It has not been cleared or approved by the US Food and Drug Administration. FDA does not require this test to go through premarket FDA review. This test is used for clinical purposes. It should not be regarded as investigational or for research. This laboratory is certified under the Clinical Laboratory Improvement Amendments (CLIA) as qualified to perform high complexity clinical laboratory testing. These analyses generally provide highly accurate information regarding the patient's carrier or affected status. Despite this high level of accuracy, it should be kept in mind that there are many potential sources of diagnostic error, including misidentification of samples, polymorphisms, or other rare genetic variants that interfere with analysis. Families should understand that rare diagnostic errors may occur for these reasons.

SELECTED REFERENCES

Carrier Screening

Grody W et al. ACMG position statement on prenatal/preconception expanded carrier screening. Genet Med. 2013 15:482-3.

Fragile X syndrome:

Chen L et al. An information-rich CGG repeat primed PCR that detects the full range of Fragile X expanded alleles and minimizes the need for Southern blot analysis. *J Mol Diag* 2010 12:589-600.

Spinal Muscular Atrophy:

Luo M et al. An Ashkenazi Jewish *SMN1* haplotype specific to duplication alleles improves pan-ethnic carrier screening for spinal muscular atrophy. *Genet Med.* 2014 16:149-56.

Ashkenazi Jewish Disorders:

Scott SA et al. Experience with carrier screening and prenatal diagnosis for sixteen Ashkenazi Jewish Genetic Diseases. *Hum. Mutat.* 2010 31:1-11.

Akler G et al. Towards a unified approach for comprehensive reproductive carrier screening in the Ashkenazi, Sephardi, and Mizrahi Jewish populations. *Mol Genet Genomic Med*. 2020 Feb 8(2):e1053.

Duchenne Muscular Dystrophy:

Flanigan KM et al. Mutational spectrum of *DMD* mutations in dystrophinopathy patients: application of modern diagnostic techniques to a large cohort. *Hum Mutat*: 2009 30:1657-66.

Variant Classification:

Richards S et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. *Genet Med.* 2015 May;17(5):405-24

Riggs ER, Andersen EF, Cherry AM, et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen) [published correction appears in Genet Med. 2021 Nov;23(11):2230]. Genet Med. 2020;22(2) 245-257.

Additional disease-specific references available upon request.